Zusammenfassung

Thermal hydrolysis (TH) increases the anaerobic biodegradability of waste activated sludge (WAS), but also refractory organic and nutrient return load to a wastewater treatment plant (WWTP). This could lead to an increase in effluent chemical oxygen demand (COD) of the WWTP. The aim of this study was to investigate the trade-off between increase in biogas production through TH and anaerobic digestion and increase in refractory COD in dewatered sludge liquors at different temperatures of TH in lab-scale. WAS was thermally hydrolyzed in temperature range of 130e170 C for 30 min to determine its biomethane potential (BMP). After BMP test, sludge was dewatered and sludge liquor was aerated in Zahn-Wellens test to determine its non-biodegradable soluble COD known as refractory soluble COD (sCODref). With increasing temperature in the range of 130e170 C, BMP of WAS increased by 17e27%, while sCODref increased by 3.9e8.4%. Dewaterability was also enhanced through relative increase in cake solids by 12 e30%. A conversion factor was defined through mass balance to relate sCODref to volatile solids of raw WAS. Based on the conversion factor, expected increase in effluent CODs of six WWTPs in Berlin were predicted to be in the range of 2e15 mg/L after implementation of TH at different temperatures. It was concluded that with a slight decrease in temperature, formation of sCODref could be significantly reduced, while still benefiting from a substantial increase in biogas production and dewaterability improvement.

Zusammenfassung

In Berlin wird Trinkwasser ohne aufwändige technische Aufbereitung über naturnahe Verfahren gewonnen. Ca. 80% des geförderten Rohwassers stammen aus Uferfiltration oder künstlich angereichertem Grundwasser (Möller & Burgschweiger 2008). Nach der Entfernung von Eisen und Mangan über Belüftung und Filtration wird im Routinebetrieb grundsätzlich auf eine chemische Desinfektion verzichtet. Zur Gewährleistung der hygienischen Sicherheit haben die Wasserschutzgebiete und hier insbesondere die engere Schutzzone (Zone II) daher eine wichtige Bedeutung. Deren Ausdehnung reicht von der Fassungsanlage bis zu der Linie, von der aus das genutzte Grundwasser 50 Tage im Grundwasserleiter fließt, bevor es über Brunnen zum Wasserwerk gefördert wird (DVGW 2006). Durch die Einhaltung dieser 50-Tage-Richtlinie wird v.a. der Schutz vor mikrobiellen Verunreinigungen angestrebt. Die Aufenthaltszeit des Wassers in der Untergrundpassage kann direkt durch Markierungsversuche ermittelt werden. Da solche Tracer-Untersuchungen zeitlich und technisch aufwändig sind, wurde im Rahmen verschiedener gemeinsamer Forschungsprojekte der Berliner Wasserbetriebe und des Kompetenzzentrums Wasser Berlin geprüft, mit welchen einfachen, kostengünstigen Methoden die Fließzeiten und die Auswirkungen sich ändernder klimatischer Randbedingungen im Betrieb der Grundwasseranreicherung und der Trinkwasserbrunnen überwacht werden können (Sprenger et al. 2016). Dabei wurden unter anderem kontinuierlich messende Temperatur-Druck-Sonden eingesetzt, sowie Geräte zur Quasi-Echtzeitmessung mikrobiologischer Parameter. Parallel wurde für einen Wasserwerksstandort in Berlin ein vereinfachtes numerisches Modell erstellt, mit dem Anreicherungsszenarien in Abhängigkeit der Temperatur des angereicherten Wassers gerechnet und bewertet werden können. Außerdem wurde der Einfluss der Wassertemperatur auf betriebliche Parameter der Oberflächenwasseraufbereitung untersucht. Die Untersuchungen sind ebenfalls Grundlage für risikobasierte Bewertungsansätze für hydraulische und mikrobiologische Parameter und die Ableitung betrieblicher Maßnahmen gegen eine Unterschreitung der 50-Tage-Verweilzeit.

Zusammenfassung

Nitrogen and phosphorus budgets were compiled for the littoral (29 km2) and pelagic (329 km2) of ancient, deep, clear, and hard water Lake Ohrid (Albania and North Macedonia), to assess the importance of the littoral in nutrient retention. P originates mainly from domestic point sources (73%), for N this is karst seepage (50%). Total littoral loads are estimated at 1700 kg P and 23,200 kg N km-2 (area of littoral) yr-1; net littoral retention is 31% ± 13% for P and 40% ± 16% for N, largely in the dense charophyte belt. P retention is mainly due to detritus burial, but also due to coprecipitation; N retention is due to both detritus burial and denitrification. A Monte Carlo plausibility analysis balanced the budget by increasing nonconnected domestic household inputs (from 20% to 27% of external load), and decreasing pelagic sediment P burial by 27% and littoral denitrification by 25%. Scenario projections for 2100 corresponding to SRES A2 and B1 were linked to an AQUASIM lake ecosystem model. Under B1, the changes were small compared to the present. A2, however, led to a major reduction in precipitation, an increase in evapotranspiration, a reduction in river outflow (to ~20%), a doubling in P-loading, a drop in lake level of ~1.5 m, and a decline in the extent of the charophyte belt. Areal loading of the littoral would increase accordingly, but water transparency would not decline much. Also, the littoral vegetation will witness a shift in species composition, and an increase in filamentous Cladophora cover.

Zusammenfassung

Combined sewer overflows (CSOs) are of major environmental concern for impacted surface waterbodies. In the last decades, major storm events have become increasingly regular in some areas, and meteorological scenarios predict a further rise in their frequency. Consequently, control and treatment of CSOs with respect to best practice examples, innovative treatment solutions, and management of sewer systems are an inevitable necessity. As a result, the number of publications concerning quality, quantity, and type of treatments has recently increased. This review therefore aims to provide a critical overview on the effects, control, and treatment of CSOs in terms of impact on the environment and public health, strict measures addressed by regulations, and the various treatment alternatives including natural and compact treatments. Drawing together the previous studies, an innovative treatment and control guideline are also proposed for the better management practices.

habibi (2020): Projekt REEF 2W – energetische Potenziale ausschöpfen.

wwt Wasserwirtschaft Wassertechnik: 40-41

Zusammenfassung

Die energetischen Potenziale in kommunalen Kläranlagen werden nur unzureichend ausgeschöpft und bleiben in Klimaschutzmaßnahmen häufig unberücksichtigt. Kläranlagen gehören jedoch zu den größten kommunalen Stromverbrauchern und haben dadurch einen signifikanten CO2-Fußabdruck. Im Vorhaben REEF 2W, das von der EU im Rahmen des Programms INTERREG 2 gefördert wird, wird mit Blick auf öffentliche Infrastrukturen von Städten und Gemeinden ein Entscheidungstool zur strategischen Planung entwickelt. In diesem Tool können neue Technologien in die bestehende Anlagensituation integriert werden, um eine höhere Energieeffizienz und eine Verbesserung der Nutzung von nachwachsenden Rohstoffen zu erzielen. Dies soll durch Kombination und Integration der Sektoren Abfall- und Abwasserbehandlung erreicht werden. Das Projekt untersucht im Rahmen der Toolentwicklung die Ressourcenströme und notwendigen technischen Infrastrukturen. Ein Kernstück bildet dabei die Co-Fermentation von Klärschlamm und Bioabfall während deFaulungsprozesses, wodurch sich die Wärme- und Energieerträge (Strom oder Gas) beträchtlich steigern lassen können. Daneben werden neue Wege zur Nutzung des anfallenden Faulgases aufgezeigt, z. B. Gasaufbereitung und Einspeisung ins Gasnetz sowie Power-to-Gas Technologie. Ziel des Excel-basierten Entscheidungstools ist es letztlich, verschiedene innovative Technologiekombinationen energetisch, wirtschaftlich und ökologisch mit dem aktuellen Status zu vergleichen.

Zusammenfassung

Cities worldwide are facing several challenges connected to urbanization and climate change. Several cities have identified the implementation of nature-based solutions (NBS) as an option to mitigate several challenges at once. However, can two different aims be reached with NBS in the same location? This question has not yet been addressed. This paper discusses the spatial compatibility of NBS implementation strategies to tackle (1) urban heat island (UHI) effects and (2) water pollution at the same location. The evaluation is based on a spatial analysis of Berlin. We found a positive correlation of high UHI and median high stormwater pollution loads for zinc, total suspended solids, Polycyclic Aromatic Hydrocarbons and Terbutryn. Out of more than 14,000 building/street sections analyzed, 2270 showed spatial matching of high UHI and high stormwater pollution loads. In the majority of building/street sections, stormwater pollution was high for three out of the four parameters. We conclude that the compatibility of NBS implementation for both challenges depends both on the implementation strategies for NBS and on the specific NBS measures. Our spatial analysis can be used for further planning processes for NBS implementation.

Zusammenfassung

Wie können unsere Kommunen die Möglichkeiten, die Regenwasserbewirtschaftung und neuartige Wasserinfrastrukturen als auch blau-grüne Infrastrukturen bieten, gut in ihre Planungsprozesse integrieren? Wie können die Leistungen der einzelnen Maßnahmen schnell, einfach und gut im Rahmen von Planungsworkshops mit Fachakteuren und Laien kommuniziert und genutzt werden? Hierzu wurden im Forschungsprojekt netWORKS 4 sogenannte Infokarten zu 20 Infrastrukturbausteinen als partizipatives Planungstool entwickelt und in verschiedenen Workshops erprobt. Sie sind nun als frei verfügbares Tool kostenlos zugänglich.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.