Zusammenfassung

Die bauliche Substanz eines Kanalnetzes ist eine wichtige Kenngröße zur mittelfristigen Planungsunterstützung und zur Entwicklung von Sanierungsstrategien. Verschiedene Ansätze zur Substanzklassifizierung wurden bereits in der Vergangenheit entwickelt. Es existiert bisher aber noch kein allgemeingültiger Standard. In diesem Artikel werden die Ergebnisse des vom Bundeswirtschaftsministerium geförderten Verbundvorhabens „Entwicklung eines Standards zur Bewertung und Klassifizierung der baulichen Substanz von Kanalisationen“ (SubKanS) vorgestellt.

Ausgehend von den Anforderungen und Erwartungen der Netzbetreiber an eine solche Klassifizierung wird die Abnutzung einer Haltung auf Basis von Einzelzuständen nach Schadensart und -ausprägung mit unterschiedlicher Gewichtung ermittelt und eine Substanzklasse zugeordnet. Die Kalibrierung der Modellparameter und Zuordnungsregeln erfolgte auf Basis von Experteneinschätzungen und statistischen Auswertungen von ca. 100 000 Haltungen.

Zusammenfassung

Ultimate aims to establish and foster water smart industrial symbiosis by implementing circular economy solutions for water, material and energy recovery. The circular economy solutions shall create a win-win situation for both the water sector and the industry. In nine case studies the water sector forms those symbiosis with companies from the agro-food, beverage, petrochemical, chemical and biotech industry.

Zusammenfassung

This report describes the main functionalities the SMART-Control web-based tool T1B Quantitative microbial risk assessment. The tool helps to quantify the pathogen occurrence in source water and their removal by various treatment steps at MAR facilities by using a probabilistic approach. The interactive web-based QMRA tool supports the evidence-based risk assessment to minimize water-related infectious diseases.

Zusammenfassung

Subsurface travel time from the area of recharge to the point of abstraction during MAR is a critical parameter to ensure sufficient attenuation for hygienic parameters and other undesired substances. A new simulation tool has been developed by the SMART-Control project partners KWB and TUD for determination of groundwater hydraulic residence time (HRT) using seasonal temperature fluctuations observed in recharge water and MAR recovery wells. This tool represents a proxy for quick, costs-effective and reliable control of travel time during aquifer passage. Time series of seasonal temperature measurements observed in surface water and abstraction wells can be fitted to sinusoidal functions. Peak values represented as local maxima and local minima and turning points from the fitted sinusoidal curves are used for the approximation of travel times between surface water and abstraction well. The calculated values are adjusted by a thermal retardation factor. The developed tool is userfriendly and offers the possibility to use existing hystorical temperature measurements as well as online sensor data. Data acquisition is resolved through the internal connectivity with other web-tools developed within the SMART-Control project, providing thus an integrated simulation environment.

Zusammenfassung

This report summarizes the work for monitoring of hydraulic residence time (HRT) carried out at the Managed Aquifer Recharge (MAR) site Berlin-Spandau waterworks. The newly installed monitoring system consists of realtime online sensor data and evaluation algorithms implemented as a web-based software tool. The combination of online data with processing tools allows time-efficient HRT evaluation. Apart from HRT estimations, the monitoring also included measurements by flow-through cytometry (FCM), meta-genomic DNA sequencing and classical microbial cultivation-based analysis. FCM cell counting allows to quantitatively detect microbial cells after staining with a DNA-binding fluorescent dye. The aim of FCM measurements was to gain insights on microbial dynamics along the flow path from the infiltration basin to the abstraction well. The FCM device was installed to measure in the infiltration basin, groundwater observation well and abstraction well in a continuously flowing sampling line that allowed for automatic and continuous monitoring in water. Microbial indicators of viruses, bacteria and protozoa were sampled and analysed by classical cultivation-based methods in parallel to the FCM measurements. The combination of FCM with cultivation-based methods aimed to establish an indicative reference cell count representing a hygienically safe water. The high-frequency flow cytometry data revealed decreasing order of total cell counts from surface water in the infiltration basin water to groundwater in the abstraction well. The fairly constant measurements in the abstraction well may allow to use FCM fingerprinting as a fast monitoring tool in combination with cultivation based methods. However, long-term measurements of FCM for at least 6 months are recommended to assess seasonal fluctuation in both source water and groundwater. Water samples were in addition characterised by DNA sequencing enabling a complete "meta genomic" analysis and taxonomic profiling including bacterial, archaea, viral, eukaryotic DNA. The DNA sequencing in combination with FCM measurements showed that total cell counts decreased along the flow path while the biodiversity increased.

Zusammenfassung

In 2015, the town of El Port de la Selva in Spain implemented soil-aquifer treatment (SAT) using tertiary treated wastewater effluents to replenish the local potable aquifer. This study evaluated the initial phase of this indirect potable water reuse system including a characterization of hydraulic conditions in the aquifer and monitoring of microbial contaminants and 151 chemicals of emerging concern (CECs). The combined treatment resulted in very low abundances of indicator bacteria, enteric viruses and phages in the monitoring wells after three days of infiltration and a reduction of antibiotic microbial resistance to background levels of local groundwater. After tertiary treatment, 94 CECs were detected in the infiltration basin of which 15 chemicals exceeded drinking water thresholds or health-based monitoring trigger levels. Although SAT provided an effective barrier for many chemicals, 5 CECs were detected above health-based threshold levels in monitoring wells after short hydraulic retention times. However, additional attenuation is expected due to dilution prior to abstraction via downstream drinking water wells and during granular activated carbon (GAC) filtration, which was recently installed to mitigate residual CECs. Overall, the results demonstrate that indirect potable water reuse can be a reliable option for smaller communities, if related risks from microbial and chemical contaminants are adequately addressed by tertiary treatment and subsequent SAT, providing sufficient hydraulic retention times for pathogen decay and CEC removal.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.