Zusammenfassung

Während der letzten zwei Jahrzehnte ist ausgehend von einer zunächst naturwissenschaftlichtechnisch orientierten Umweltforschung eine stärker inter- und transdisziplinäre Nachhaltigkeitsforschung entstanden, welche die Beziehungen zwischen Menschen, Gesellschaft und Natur und die dabei feststellbaren krisenhaften Entwicklungen zu ihrem Gegenstand gemacht hat. In diesem fächerübergreifenden Forschungsfeld entstanden unterschiedliche konzeptionelle Ansätze für die systemische Analyse und das Management von Mensch-Umwelt-Systemen. Insbesondere im anglo-amerikanischen Sprachraum und in Skandinavien wurden verschiedene Konzeptionen von Resilienz entwickelt. Im Folgenden werden deren Potenziale diskutiert und für den Einsatz in der sozial-ökologischen Stadt- und Infrastrukturforschung mit anderen integrativen Konzepten wie Klimagerechtigkeit verglichen.

Zusammenfassung

Circular Agronomics, aims to foster the transition from a linear economy to a circular economy. Therefore, this deliverable focuses on circular solutions for waste and wastewaters originating from the food industry. In 2019, the “Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries” (BREF-document) was published by the European Commission. Based on that, the deliverable summarizes the state of the art of the technologies already in use and concludes their suitability for circular economy solutions. In Circular Agronomics, new technologies for the recovery of carbon, nitrogen, phosphorus and potassium are developed and investigated. So far, those technologies are not included in the BREF-document yet. Therefore, the concepts of the technologies are introduced in the deliverable. For a potential integration of those technologies in the BREF-document, the technologies are described in detail in the annex according to the required structure in the BREF-document. However, since the technologies are still under development, those descriptions are considered as a first draft. The authors suggest to update those descriptions at a later stage of the project prior to their potential integration in the BREF-document. Referring to the goal to recover carbon and nutrients, the deliverable presents a detailed characterization of the waste and wastewaters originating from the food industries. Based on that, the five most promising waste and wastewater streams regarding carbon recovery, nitrogen recovery, phosphorus recovery and potassium recovery were selected. For those streams and the corresponding recovery technologies four new concepts are suggested in the deliverable. In order to show the technology providers an overview of potential clients for their technologies and for those concepts, for each selected industry, the European country with the highest production rate was chosen. For this country, the regional distribution of the certain industry was determined.

Zusammenfassung

Zur Verminderung von Spurenstoffeinträgen in Oberflächengewässer wurden bereits einige Kläranlagen in Deutschland und der Schweiz um eine weitergehende Reinigungsstufe (Ozon oder Aktivkohle) erweitert. Zur Erzielung einer gleichbleibenden Spurenstoffelimination und einer gleichzeitigen Vermeidung von Fehldosierungen (Kosten, Rohstoffeinsatz) werden verlässliche Messverfahren und robuste MSR-Konzepte (Mess-, Regel- und Steuerung) benötigt. Im Rahmen des Projekts „MeReZon" (Schnelle und zuverlässige Messtechnik und Steuer-/Regelkonzepte für eine weitergehende Abwasserreinigung) wurde an einer Pilot-Ozonanlage zur Behandlung von gereinigtem Abwasser untersucht, unter welchen Randbedingungen eine verlässliche Onlinemessung möglich ist. Dabei wurde u.a. die Leistungsfähigkeit eines neu entwickelten Ultraschallreinigungsmoduls zur Vermeidung einer Messwertdrift durch Fouling untersucht und mit den Sonden bzw. Reinigungsmodulen anderer Hersteller in verschiedenen Konfigurationen verglichen. Dabei wurden deutliche Unterschiede festgestellt. Darauf aufbauend wurde das bestehende MSR-Konzept der Ozonanlage optimiert und ein alternierender Messbetrieb, d.h. abwechselnde Beschickung einer Messsonde mit Zu- bzw. Ablauf der Ozonung, implementiert. Die Ergebnisse zeigen, dass mit dem optimierten MSR-Konzept eine stabile Abnahme des SAK254 (SAK254) erzielt werden kann, welche mit der Spurenstoffelimination korreliert. Die erfolgreiche Umsetzung des alternierenden Messbetriebs ermöglicht die Ermittlung der SAK254 Abnahme mit nur einer Messsonde, was prinzipiell Vorteile bei einer Regelung der Ozondosis auf ein stabiles SAK254 mit sich bringt. Zudem konnte gezeigt werden, dass die Onlinemessung der Fluoreszenz eine praktikable Alternative zum SAK254 darstellt, da diese ebenfalls eine Änderung des Ozonbedarfs integral erfassen kann und mit der Spurenstoffelimination korreliert. Die gewonnenen Ergebnisse bieten Messgeräteherstellern wertvolle Anhaltspunkte wie sie ihre Onlinesonden und Reinigungsmodule weiter optimieren können. Das entwickelte MSR-Konzept bzw. der alternierende Messbetrieb kann von Betreibern von Ozonanlagen auf kommunalen Kläranlagen zur Optimierung bestehender oder zukünftiger Anlagen genutzt werden.

Zusammenfassung

The overall aim of the "Clear Waters from Pharmaceuticals" (CWPharma) project is to provide guidance on how to reduce the load of active pharmaceutical ingredients (APIs) entering the aquatic environment and especially the Baltic Sea. Even though different methods for reducing the amount of APIs entering the wastewater exist and, thus, "end-of-pipe" measures are also necessary. API usage cannot be completely avoided. Municipal wastewater treatment plants (WWTPs) are relevant point sources of APIs as they treat the wastewater from public households, hospitals, and industry of the connected catchment area. However, conventional "state-of-the-art" WWTPs can only remove APIs that are either easily biodegradable and/or absorbable to activated sludge, whereas others can pass the treatment process with no or only minor reductions. Therefore, reduction of a broad range of APIs can only be achieved by using targeted advanced wastewater treatment (AWT) techniques, such as ozonation or application of powdered and granular activated carbon. All of these technologies for API removal are already used at full-scale WWTPs and have proven their practical and economical suitability. This guideline is meant to provide an overview on how to plan, start, and operate AWT technologies for API elimination. The recommendations are based on the experiences and results from the CWPharma project, but also on the available knowledge from Germany and Switzerland, which is collected and distributed by competence centres such as the German Micropollutants Competence Centre Baden-Württemberg (KomS) Verfahrenstechnik Mikroverunreiniungen and the Swiss Plattform as well as by expert groups from the related water associations. Membrane separation via dense membrane such as nanofiltration (NF) or reverse osmosis (RO) was not considered in this guideline, as both technologies produce a brine with high API concentrations. At coastal WWTPs, this brine might be discharged directly to the sea in order to protect fresh water ecosystems, but this would not reduce the API load to the Baltic Sea. Thus, the brine also requires treatment, which makes this approach less economical in comparison to the other established API removal technologies.

Zusammenfassung

Elevated levels of active pharmaceutical ingredients (API) have been detected in the Baltic Sea for many years. These APIs are often discharged from hospitals, households, pharmaceutical manufacturing plants, and animal farms, among other sources. As APIs are not completely degraded in municipal wastewater treatment plants (WWTP), they are then transported to the Baltic Sea. Although research on the effects of APIs in the Baltic Sea has been ongoing, the consequences of API discharges on the environment, in terms of potentially risky ecological effects, have not yet been fully evaluated. The European Union’s Interreg Baltic Sea Region programme funded the Clear Waters from Pharmaceuticals (CWPharma) project, which quantified API loading into the Baltic Sea from six river basin districts. Seven Baltic Sea Region (BSR) countries were involved as CWPharma partners (Denmark, Estonia, Finland, Germany, Latvia, Poland and Sweden). Surface water, soil, and sediment samples were collected from coastal, rural, and agricultural locations and analysed for up to 80 APIs. By comparing the API concentrations detected in rivers with predicted no-effect levels (PNEC), the environmental risk of individual APIs was quantified. A GIS-based model was developed which allowed illustration and assessment of API loads into the Baltic Sea coming from the project partner countries, as well as evaluation of the impacts of various emission reduction scenarios. Different types of emission reduction measures were proposed. Reductions of API emission from WWTPs through the application of advanced wastewater treatment (AWT) technologies were experimentally validated at full- and pilot-scale. AWT technologies tested in CWPharma included full-scale ozonation and various post-treatment technologies, such as moving bed bioreactors, constructed wetlands, deep bed filters using sand/anthracite, and granular activated carbon. Additionally, 21 recommendations for other reduction measures focused on improving collection and disposal of unused pharmaceuticals and pharmaceutical waste, targeting various groups and emitters, were also developed. By simulating the variety of API reduction methods within the API loading model, the most effective measures for reducing API emissions could be determined. Similarly, both the costs and global warming potential of upgrading various classes of WWTPs with AWT in the form of ozonation or activated carbon were calculated for each CWPharma project partner country. This report summarizes the most important recommendations elicited from the CWPharma project.

Zusammenfassung

This report aims to identify good practices for environmental permitting of pharmaceutical plants in some Baltic Sea (BS) countries and spread them to other countries where they are lacking or inefficient. The objective is to enhance permitting of pharmaceutical plants within current legislation framework to obtain information on their active pharmaceutical ingredient (API) emissions to municipal WWTPs (MWWTPs) and environment, resulting in improved information on pharmaceutical emissions, and aiding with direct mitigation measures when necessary. The pharmaceutical industry is highly globalized, interconnected and heterogeneous both spatially and temporally. The pharmaceutical industry includes API-production and the production of pharmaceutical products. Emissions from these activities may vary significantly. Also, as many activities are patch processes, emissions of specific substances are likely to happen only sporadically. The pharmaceutical industry may also include (re)packaging and other activities. The UNESCO & HELCOM Status Report on Pharmaceuticals (2017) [1] contains some information on pharmaceutical production in Estonia, Finland and Sweden, but no information on permitting practices of pharmaceutical plants. Thus, this report fills in identified information gaps related to the production of pharmaceuticals, e.g. by HELCOM. The working method evaluates the current national practices for environmental permitting for pharmaceutical plants in all seven countries represented in the project CWPharma (Denmark, Estonia, Finland, Germany, Latvia, Poland and Sweden) with the aim of collecting some information also from Russia. In the Baltic Sea region (BSR), wide recommendations on good practices for environmental permitting of pharmaceutical plants are proposed to initiate the process that clarifies the role of the pharmaceutical industry as a possible source of APIs and to estimate the need for measures that control the pharmaceutical industry’s emissions. Additionally, the aim is to evaluate the industrial wastewater contracts between municipal wastewater treatment plants (MWWTPs) and pharmaceutical plants in each BS country, even if this task is more difficult than the task related to environmental permitting of pharmaceutical plants. These documents are not publicly available, and thus the information on contracts proved difficult to obtain. The BSR wide recommendations are aimed at formulating good practices for industrial wastewater contracts between MWWTPs and pharmaceutical plants. The activities of this report pose very high transnational relevance in the Baltic Sea region (i.e. transnational spreading of good practices), because the recommendations are based on the current good practices in BSR countries and improvements made for them. Furthermore, the objective is that the recommendations will be utilised and implemented in all Baltic Sea countries. The information presented in this report will be used to identify priority measures at a national level to reduce pharmaceutical emissions. The results will also increase knowledge among target groups under the CWPharma project (pharmaceutical industry, operators of MWWTPs, permitting and supervisory authorities) and other relevant stakeholders through national stakeholder meetings and reports.

Zusammenfassung

This report describes the contamination by pharmaceuticals and the environmental risks associated with their environmental levels in the Baltic Sea Region. Data were collected within the three-year project Clear Waters from Pharmaceuticals (CWPharma) funded by the EU’s Interreg Baltic Sea Region Programme. Sampling was performed in the river basin districts of Vantaanjoki in Finland, Pärnu in Estonia, Lielupe and Daugava in Latvia, Vistula in Poland, Warnow-Peene in Germany and Motala ström in Sweden. Analyses were performed on surface water, coastal water, sediment and soil that was fertilized with sewage sludge or manure. Analyses were also performed on emissions from municipal wastewater treatment plants, hospitals, pharmaceutical manufacturing facilities, landfills, and fish and livestock farms. In total, the study covered 13 365 data points from 226 samples as well as collection of human and veterinary consumption data of selected active pharmaceutical ingredients (APIs). Samples were screened for up to 80 APIs, representing antibiotics, antiepileptics, antihypertensives, asthma and allergy medications, gastrointestinal disease medications, hormones, metabolic disease medications, non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics, other cardiovascular medicines, psychopharmaceuticals, veterinary medicines and caffeine. The measured APIs were selected based on analytical capacity, consumption rates, identified data gaps and potential environmental risks. Literature and databases were screened for ecotoxicological information. Acute toxicity tests were performed for two APIs, nebivolol and cetirizine, for which ecotoxicological data were lacking. Measured environmental concentrations were compared with predicted no-effect concentrations (PNEC) to assess environmental risks of the selected APIs.

Zusammenfassung

During the last decades, it has become evident that some active pharmaceutical ingredients (API) have harmful environmental impacts on aquatic ecosystems. Therefore, there is a need to decrease the amount of pharmaceutical residues that end up in the environment. Information gaps related to increased awareness of the environmental impacts of pharmaceuticals in the health care sector and the promotion of sustainable consumption of pharmaceuticals have been identified in the Status Report on Pharmaceuticals in the aquatic environment of the Baltic Sea Region (BSR) published by UNESCO and HELCOM in 2017. The aim of the current report is to fill in some of the identified knowledge gaps identified in the HELCOM report, specifically increasing awareness about the environmental impacts of pharmaceuticals. In Sweden, there are good practices for healthcare professionals about how to consider the environmental impacts of medications already at the prescription phase, as well as guidelines for how to make the environmental information available and accessible to healthcare professionals and the public. The Swedish practices are described and evaluated, and the measures that can be implemented in the other BSR countries are formulated as recommendations. Eight recommendations were formulated through dialogues with stakeholders in Sweden. The recommendations are divided into four main areas i.e. education, databases and guidelines, dissemination of information to public, and collaboration among stakeholders. Some recommendations might be implemented without any large challenges or financial costs while other recommendations require large changes such as economic investments and changes in legislation. This report also contains information about existing practices in other countries in the Baltic Sea region (BSR), provided by the project partners in the CWPharma project. The countries in the BSR are currently at different levels when it comes to management of pharmaceuticals and their residues in the environment. Public awareness of the environmental impacts of pharmaceuticals differs, as do the systems for returning leftover medications. Basic education for health care personnel regarding the environmental consequences of different medications and pharmaceutical compounds exists in most of the BSR countries but the scope and content differs. One recommendation in the report is that environmental impacts of APIs should be compiled in a national, or ideally an EU level, database. As a first step, the Baltic Sea countries could investigate the possibility to establish national interfaces to the Swedish databases “Pharmaceutical and environment” (Janusinfo) or FASS. Although the data in “Pharmaceutical and environment” and FASS are not complete, they are existing platforms which provide valuable information and gather criteria important for classification. In Sweden, there are several channels for the dissemination of information about the environmental consequences of pharmaceuticals with the aim to raise public awareness regarding this subject. Examples of actions to be considered by other countries are information campaigns driven by pharmacies for returning unused and left over medications (Germany and Finland have similar campaigns), and distribution of leaflets with information about the environmental impacts of pharmaceuticals, which have proven to be efficient in raising awareness among pharmacists, doctors and the public. The collaboration of different stakeholders is one of the foremost reasons for the progress that has been made regarding pharmaceuticals in the environment in Sweden. The Swedish Medical Production Agency has set up a Knowledge Centre for Pharmaceuticals in the Environment, providing a platform for different actors to discuss environmental issues connected to pharmaceuticals. Among these actors there is a sense of a shared environmental vision with common goals. Hence, one recommendation for the BSR countries is to investigate the possibilities of establishing similar national knowledge centers within medicine agencies, or to use existing networks as a starting point to also involve other environmental issues related to pharmaceuticals and to find new collaboration possibilities. Finally, collaboration between the EU countries is crucial to successfully implement environmental aspects in the lifecycle of the pharmaceuticals.

Kleyböcker, A. , Geist, L. , Schütz, J. , Kowslowski, J. , Kraus, F. , Muskolus, A. , Dünnebeil, A. (2020): Vakuum-Entgasung zur Ammonium-Abreicherung von Gärrückständen.

p 131 In: Pflanzenbauliche Verwertung von Gärrückständen aus Biogasanlagen. Online-Fachtagung. 15.09.2020

Zusammenfassung

Gülle und Gärreste werden häufig als Wirtschaftsdünger in der Landwirtschaft eingesetzt. Sie liefern sowohl organisches Material für den Boden als auch Stickstoff, der ein wichtiger Nährstoff für Pflanzen ist. Oft stimmt jedoch die gesetzlich vorgeschriebene, saisonale Ausbringung der Gülle nicht mit dem Zeitpunkt des tatsächlichen Stickstoffbedarfs der Pflanzen überein. Dies führt zu einem unerwünschten Verlust des Stickstoffs für die Pflanzen durch Emissionen ins Grundwasser (Nitrat) oder in die Atmosphäre (Ammoniak und/oder Lachgas). Besonders in Regionen mit einem hohen Gülleaufkommen und einer hohen Ausbringungsrate der Gülle kann es zu starken Umweltbelastungen kommen. Um die Zufuhr des organischen Materials für den Boden von der Stickstoffzufuhr aus der Gülle für die Pflanzen zu entkoppeln, wurde in dem EU geförderten Projekt Circular Agronomics (www.circularagronomics.eu) eine Pilotanlage entwickelt und konstruiert. Die Pilotanlage soll eine „stickstoffabgereicherte Gülle“ produzieren, die als Bodenverbesserer eingesetzt werden kann. Cirular Agronomics zielt darauf ab, zwischen 80 % und 90 % des Stickstoffs, der ursprünglich als Ammonium vorlag, aus der Gülle bzw. dem Gärrest zurückzugewinnen. In einem anschließenden Gaswäscher reagiert das Ammoniakgas mit Schwefelsäure zu einer Ammoniumsulfatlösung, welche ein typischer mineralischer Stickstoffdünger ist. Dieser kann dann ausgebracht werden, wenn die Pflanze den Stickstoff benötigt und umsetzen kann. Um den Prozess der Vakuumentgasung besser zu verstehen und die optimalen Prozessbedingungen zu untersuchen, wurden im Vorfeld Laborexperimente durchgeführt. In den Versuchen wurden der pH-Wert, die Druckbedingungen und die Prozesstemperatur variiert. Die Experimente zeigten, dass bei einem pH-Wert von 9.0, einer Temperatur von 60 °C und einem absoluten Druck von 190 mbar bis zu 88 % des Ammoniums aus dem Gärrest in Form von Ammoniak abgereichert wurden. Eine CO2-Strippung vor Anhebung des pH-Wertes auf pH 9.0, verringerte zudem die notwendige Natronlaugenzufuhr zur pH-Wert-Anhebung um 30 %. Basierend auf den Ergebnissen der Experimente wurden Schlussfolgerungen für ein optimales Design der Pilotanlage abgeleitet. Derzeit wird die Pilotanlage in Betrieb genommen und erste Versuche durchgeführt, deren Ergebnisse ebenfalls im Vortrag präsentiert werden.

Franceschi, S. , Rose, E. (2020): D5.3: Environmental Policy Analysis.

Kompetenzzentrum Wasser Berlin gGmbH

Zusammenfassung

Circular Agronomics (CA) provides a comprehensive synthesis of practical solutions to improve the current carbon, nitrogen and phosphorus cycling in European agro-ecosystems and related up and downstream processes within the value-chain of food production. CA is a frontrunner project exploiting affordable solutions to meet, among others, the requirements of agriculture, water and waste legislations as well as the EU policy targets regarding emission reduction (mainly NH3, NOx and GHG: CO2, CH4, N2O). The policy analysis contributes to market innovations, to sustainability and European initiatives and finally also to the development of effective joined up policy - further steps towards integrating agriculture in circular economy.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.