Combined sewer overflows (CSO) impair the quality of urban surface waters around the world. Future change, in particular global warming, is expected to worsen the situation further in many urban areas. To improve the quality of urban surface waters, tools are needed to support decision makers in the assessment of CSO-related impacts and possible mitigation measures. Apart from finding solutions to current problems, it is important that these tools also allow the adaptation of these solutions to future change scenarios to be prepared for likely developments. The present report suggests a model-based planning instrument for the assessment of CSO impacts on receiving surface waters under different sewer management and climate change scenarios. The suggested planning instrument couples a sewer and a surface water model for which boundary conditions can be changed depending on the studied scenario. The simulated CSO impact is then analysed via a coupled impact-assessment tool. The selection of appropriate model approach, assessment guideline and scenarios depend on the local conditions regarding the sewer system, the surface water type and the relevant CSO impact. Accordingly, the report aims at giving a general overview of available models, assessment guidelines, as well as sewer management and change scenarios, which allows setting up a planning instrument for a wide range of local conditions. The present report serves as a step-by-step-manual for setting up an impactbased planning instrument for CSO control: 1. Assessment of possible impacts of CSO, depending on local receiving surface water bodies (chapter 2.1) 2. If this assessment shows the need for a planning instrument, sewer and surface water models should be selected depending on type of impact, type of sewer system and type of surface water body (chapters 2.2 and 2.3). 3. Selected models need to be run, validated and possibly calibrated separately and as coupled tools (chapter 2.4).4. Scenarios are defined consisting of (i) CSO management solutions, depending on impacts of CSO that should be mitigated and sewer system characteristics (chapter 3.2) and (ii) global or local change to be accounted for depending on the local situation (chapter 3.1). The instrument can be used to test sensitivity of CSO impacts to different scenarios or for concrete planning of measures, including cost (chapters 3.3 and 3.4). Use of the manual is exemplified in a case study for Berlin for each of the above steps. Application of the Berlin planning instrument will be demonstrated in Prepared Report D 1.3.2, due in February 2013.