DOI
Zusammenfassung

Pathogen removal in managed aquifer recharge (MAR) systems is dependent upon numerous operational, physicochemical water quality, and biological parameters. Due to the site-specific conditions affecting these parameters, guidelines for specifying pathogen removal have historically taken rather precautionary and conservative approaches in order to protect groundwater quality and public health. A literature review of regulated pathogens in MAR applications was conducted and compared to up-and-coming indicators and surrogates for pathogen assessment, all of which can be gathered into a toolbox from which regulators and operators alike can select appropriate pathogens for monitoring and optimization of MAR practices. Combined with improved knowledge of pathogen fate and transport obtained through lab- and pilot-scale studies and supported by modeling, this foundation can be used to select appropriate, site-specific pathogens for regarding a more efficient pathogen retention, ultimately protecting public health and reducing costs. This paper outlines a new 10 step-wise workflow for moving towards determining robust removal credits for pathogens based on risk management principles. This approach is tailored to local conditions while reducing overly conservative regulatory restrictions or insufficient safety contingencies. The workflow is intended to help enable the full potential of MAR as more planned water reuse systems are implemented in the coming years.

https://www.ncbi.nlm.nih.gov/pubmed/36931188

Zhiteneva, V. , Mosher, J. , Gerba, C. P. , Rauch-Willliams, T. , Drewes, J. E. (2023): Improving Implementation of Managed Aquifer Recharge (MAR) Systems by Utilizing Updated Pathogen Removal Knowledge.

13th IWA International Conference on Water Reclamation and Reuse. Chennai, India 15-19 January 2023

Zusammenfassung

In 2015, the town of El Port de la Selva in Spain implemented soil-aquifer treatment (SAT) using tertiary treated wastewater effluents to replenish the local potable aquifer. This study evaluated the initial phase of this indirect potable water reuse system including a characterization of hydraulic conditions in the aquifer and monitoring of microbial contaminants and 151 chemicals of emerging concern (CECs). The combined treatment resulted in very low abundances of indicator bacteria, enteric viruses and phages in the monitoring wells after three days of infiltration and a reduction of antibiotic microbial resistance to background levels of local groundwater. After tertiary treatment, 94 CECs were detected in the infiltration basin of which 15 chemicals exceeded drinking water thresholds or health-based monitoring trigger levels. Although SAT provided an effective barrier for many chemicals, 5 CECs were detected above health-based threshold levels in monitoring wells after short hydraulic retention times. However, additional attenuation is expected due to dilution prior to abstraction via downstream drinking water wells and during granular activated carbon (GAC) filtration, which was recently installed to mitigate residual CECs. Overall, the results demonstrate that indirect potable water reuse can be a reliable option for smaller communities, if related risks from microbial and chemical contaminants are adequately addressed by tertiary treatment and subsequent SAT, providing sufficient hydraulic retention times for pathogen decay and CEC removal.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.