Zusammenfassung

Over the past decade, membrane bioreactors have been increasingly implemented to purify municipal wastewater. However, even with submerged modules which offer the lowest costs, the membrane bioreactor (MBR) technology remains in most cases more expensive than conventional activated sludge processes. In addition, the European municipal MBR market is to date a duopoly of two non-European producers, despite many initiatives to develop local MBR filtration systems. In 2005, the European Commission decided to finance four projects dedicated to further technological development of MBR process: the four projects AMEDEUS, EUROMBRA, MBR-TRAIN and PURATREAT were implemented from October 2005 up to December 2009 and joined their efforts within the coalition “MBR-Network” (www.mbr-network.eu). The present report synthesises the major outcomes of the project AMEDEUS, conducted from October 2005 up to May 2009. The AMEDEUS research project aimed at tackling both issues of accelerating the development of competitive European MBR filtration technologies, as well as increasing acceptance of the MBR process through decreased capital and operation costs. The project targets the two market segments for MBR technology in Europe: the construction of small plants (semi-central, 50 to 2,000 population equivalent or p.e., standardized and autonomous), and the medium-size plants (central, up to 100.000 p.e.) for plant upgrade.

Zusammenfassung

Over the past decade, membrane bioreactors have been increasingly implemented to purify municipal wastewater. However, even with submerged modules which offer the lowest costs, the membrane bioreactor (MBR) technology remains in most cases more expensive than conventional activated sludge processes. In addition, the European municipal MBR market is to date a duopoly of two non-European producers, despite many initiatives to develop local MBR filtration systems. In 2005, the European Commission decided to finance four projects dedicated to further technological development of MBR process: the four projects AMEDEUS, EUROMBRA, MBR-TRAIN and PURATREAT were implemented from October 2005 up to December 2009 and joined their efforts within the coalition “MBR-Network” (www.mbr-network.eu). The present report synthesises the major outcomes of the project AMEDEUS, conducted from October 2005 up to May 2009. The AMEDEUS research project aimed at tackling both issues of accelerating the development of competitive European MBR filtration technologies, as well as increasing acceptance of the MBR process through decreased capital and operation costs. The project targets the two market segments for MBR technology in Europe: the construction of small plants (semi-central, 50 to 2,000 population equivalent or p.e., standardized and autonomous), and the medium-size plants (central, up to 100.000 p.e.) for plant upgrade.

Zusammenfassung

Numerous papers have been published studying the causes of fouling in membrane bioreactors (MBRs) and searching for a universal fouling indicator. Unfortunately, as these studies were performed using various set-ups and operating conditions (different membranes, sludge retention time (SRT), hydraulic conditions and diverse feed wastewaters, etc.), the results in terms of fouling rates and the infl uence of individual parameters rarely match up. In order to obtain a signifi cant database of comparable results from different plants, an intensive monitoring campaign of four MBR systems started in 2007 in Berlin. In these units, 14 parameters were monitored on a weekly basis over 10 months to characterise the mixed liquor and the corresponding permeability, including the novel parameter transparent exopolymer particles (TEP), which represent a specially sticky fraction of the extracellular polymeric substances (EPS). By performing statistical analyses it was demonstrated that there is no unique fouling indicator, and origins of fouling must be searched in the combination of several parameters using multivariable analysis. Applying a multiple regression the critical fl ux values could be correlated with four parameters (temperature, nitrate, bound and soluble TEP) measured in the activated sludge for 95% of the data.

Zusammenfassung

Three different methods for fi ltration characterization in Membrane Bioreactor (MBR) systems were compared. These were the Delft Filtration Characterization Method (DFCm), the Berlin Filtration Method (BFM) and an ex situ side-stream fi ltration test cell for the determination of the critical fl ux. The ex situ fi ltration test cell and the DFCm fi lter activated sludge from a tank, while the BFM works in situ with a test cell directly submerged into the biological tank at similar operational conditions to a typical MBR plant. The mixed liquor of four different MBR units was characterised several times with the three fi ltration methods. The three tested methods seemed to agree in the classifi cation of the tested mixed liquors in terms of fi lterability except for one of the tested activated sludges. Additionally, three critical fl ux protocols were studied using the BFM fi ltration test cell. The fi rst consisted in the classical fl ux-step method, the second included relaxation between fi ltration steps and in the third protocol, 2 min fi ltration at a fi xed fl ux were performed before every fi ltration step. The last protocol was selected as the most representative of full scale MBR operation and the most interesting one for giving valuable information about the irreversibility of the fouling.

Zusammenfassung

A continuous monitoring, using UV-VIS spectrometers, was carried out in Berlin from 2010 to 2012. It combined (i) continuous measurements of the quality and flow rates of combined sewer overflows (CSO) at one main CSO outlet downstream of the overflow structure and (ii) continuous measurements of water quality parameters at five sites within the urban stretch of the receiving River Spree. Locally, the collection of data aims at (i) characterizing CSO emissions, (ii) assessing the local dynamics and intensity of CSO impacts on the river and (iii) calibrating sewer and river water quality models being part of a planning tool for future CSO management in Berlin (Riechel et al., 2011). UV-VIS spectrometers are in-situ probes, which measure absorbance spectra ranging from UV to visual wavelengths. Concentrations, such as chemical oxygen demand (COD), are calculated from these spectra. Due to the varying composition of waste and river water a local calibration is required to enhance the measurement quality. According to Gamerith et al. (2011), manufacturer global calibration can lead to systematic error up to 50% for COD measurements.

Zusammenfassung

The widespread application of the membrane-assisted activated sludge process is restricted by membrane fouling, which increases investment and operating costs. Soluble microbial products (SMPs) are currently considered as the major cause of membrane fouling in membrane bioreactors (MBRs). This study aims at elucidating and quantifying the effects of varying environmental conditions on SMP elimination and rejection based on findings in a pilot MBR and in well-defined lab trials. Several factors are thought to influence the concentration ofSMP and their fouling propensity in one way or the other, but findings are often inconsistent or even contradictory. Here, SMP loading rate was found to have the greatest effect on SMP elimination and thus on concentration in the MBR. The degree of elimination decreased at very lowDO and low nitrate concentrations. On average, 75% of influent SMP were eliminated in both pilot and lab trials, with the elimination of polysaccharides (PS) mostly above 80%. Rejection of SMP components by the used membrane (PAN, 37nm) ranged mainly from 20% to 70% for proteins and from 75% to 100% for PS. Especially protein rejection decreased at higher temperatures and higher nitrification activity. The increased fouling rates at lower temperatures might therefore partly be explained by this increased rejection. Apparently, mainly the nitrite-oxidising community is responsible for the formation for smaller SMP molecules that can pass the membrane.

Drews, A. , Vocks, M. , Iversen, V. , Kraume, M. (2007): Does fouling in MBR depend on SMP?.

p 8 In: 4th IWA International Membranes Conference. Harrogate, UK. 15. - 17.5.2007

Zusammenfassung

Fouling still is one of the major issues of membrane bioreactor (MBR) research. Most attention is currently paid to extracellular polymeric substances (EPS) in either bound or soluble/colloidal (soluble microbial products, SMP) form. While several trends or correlations were reported, the comparability of results is still limited by the numerous differences in plant set-up and analytical methods. The aim of this study is to compare polysaccharide concentrations and their respective fouling potential in different MBR operated under different conditions using the same analytical and evaluation tools and considering all relevant differences. Results are also compared to literature findings in an attempt to come to more generally valid conclusions. Results indicate that SMP influence fouling only under certain conditions such as low sludge age and large pore size.

Zusammenfassung

Extracellular polymeric substances (EPS) are considered as the major cause of membrane fouling in membranebioreactors. Recent studies have revealed a linear relationship between fouling rate (increase of filtration resistanceover time) and polysaccharide (PS) concentration [1]. Several factors like the type of wastewater, sludge loading rate, sludge age, MLSS concentration, and mechanical stress are known to influence the concentration of dissolved EPS. Also, unsteady states like intermittent feeding or shifts in the oxygen supply have been identified as additionalfactors leading to an increase in EPS formation or to a change in its fouling propensity. However, no systematicinvestigation to quantify such influences has been undertaken so far. This study is aimed at determining the influenceof discontinuous excess sludge withdrawal often applied in small decentralised plants and resulting unsteady loadingrates on EPS formation and filtration resistance. The general trend of increased fouling rate at higher PS concentrationsis confirmed but data show a larger scatter which could be due to a change in the PS structure and hence their fouling potential. The levels of dissolved oxygen and nitrate which also fluctuate more strongly in MBRs withirregular sludge wastage appear to have a profound impact on EPS uptake rate and thereby on EPS concentration.

Zusammenfassung

Erfahrungen aus dem Betrieb einer Membranbelebung mit diskontinuierlichem Schlammabzug werden vorgestellt. Das Ziel ist, den Einfluss der Betriebsbedingungen auf Fouling und den Abbau extrazellulärer polymerer Substanzen zu bestimmen sowie mit bekannten Zusammenhängen aus Anlagen mit kontinuierlichem Abzug zu vergleichen.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.