Wicke, D. , Matzinger, A. , Rouault, P. (2015): Biocides in urban stormwater - catchment-specific differences and city-wide loads.

p 17 In: 2nd Workshop on Environmental Monitoring of Biocides in Europe. Berlin, Germany. 25-26 June 2015

Schubert, R.-L. , Sperling, K. , Caradot, N. , Kaiser, D. , Köhler, M. , Schmidt, M. , Matzinger, A. , Riechel, M. (2015): Monitoring of runoff water quality from green and gravel roofs with bitumen membranes.

p 8 In: 17th IWA Conference on Diffuse Pollution and Eutrophication. Berlin, Germany. 13-18 September 2015

Zusammenfassung

In decentralised storm water management green roofs play a vital role. Nevertheless questions remain concerning the runoff quality for nutrients and herbicides used against root penetration. In this study monitoring is conducted on two 18 year old green and gravel roofs comparing runoff quality based on concentrations and substance loads. The results indicate that runoff concentrations do not differ for total suspended solids (TSS) and total phosphorus (TP). Nitrate (NO3N) and total nitrogen (TN) concentrations are clearly reduced by the green roof (TN green roof: 1.14 mg/L, gravel roof: 2.99 mg/L, n=7), given plant uptake of atmospheric nitrogen. In contrast, organic indicators chemical oxygen demand (COD green roof: 28.1 mg/L, gravel roof: 16.1 mg/L, n=11) and total organic nitrogen (TON) are higher in green roof runoff, possibly from soil leaching. However, total substance loads for 11 sampled storm events are lower by a factor of 0.8 to 0.2 (TSS, COD, TP, TN, TON) for of the green roof compared to the gravel roof, given their different hydraulic behaviours. Regarding herbicides, Mecoprop is still found in relevant concentrations from 0.08 to 6.59 µg/L in the green roof runoff, exceeding the EU threshold for pesticides in surface water bodies of 0.1 µg/L.

Philippon, V. , Stapf, M. , Sonnenberg, H. , Schütze, M. , Pawlowsky-Reusing, E. , Rouault, P. , Riechel, M. (2015): How to find suitable locations for in-sewer storage? - Test on a combined sewer catchment in Berlin.

p 4 In: 10th International Urban Drainage Modelling Conference. Québec, Canada. 20-23 September 2015

Zusammenfassung

In this study, a method is proposed to activate the maximal in-sewer storage volume of a combined sewer system (CSS) with a limited number of flow regulators to reduce negative impacts of combined sewer overflows (CSO). Based on a detailed analysis of the CSS structure, it indicates suitable locations to install flow regulators. The method has been developed in the programming language R and tested on the Berlin’s biggest CSS. Flow regulators have been implemented in the CSS Infoworks model at the five most suitable locations found and tested for different rainfall conditions. It was found that significant additional in-sewer storage capacity can be activated (~50% of the already existing capacity) leading to CSO volume and pollutant load reductions up to 62% for a three-monthly rain event of 60 minutes duration.

Stapf, M. , Philippon, V. , Hürter, H. , Pawlowsky-Reusing, E. , Rouault, P. , Riechel, M. (2015): A Holistic Assessment Approach to Quantify the Effects of Adaptation Measures on CSO and Flooding.

p 4 In: 10th International Urban Drainage Modelling Conference. Québec, Canada. 20-23 September 2015

Zusammenfassung

Changes in rainfall patterns or land use require flexible adaptation strategies for urban drainage systems. However, finding effective measures to reduce combined sewer overflows (CSO) and flooding is not straight-forward. The presented study proposes a holistic assessment approach that combines CSO quantity and quality criteria with indicators for the spatial extent and severity of flood events. The approach is tested for three selected adaptation measures with a detailed calibrated model of Berlin’s largest combined sewer catchment in the software Infoworks CS. The results indicate that a detailed assessment based on multiple performance criteria is necessary to fully understand measure effects. The presented work is embedded in an integrated modelling study involving different elements of the drainage and the wastewater treatment system.

Zusammenfassung

Im Zusammenhang mit der Wasserqualität von Niederschlagsabflüssen wird seit einigen Jahren vermehrt die Rolle organischer Mikroverunreinigungen aus Baumaterialien diskutiert. Einer der bekanntesten Vertreter ist das Biozid Mecoprop, welches als Durchwurzelungsschutz in bitumenhaltigen Dachabdichtungen eingesetzt wird und die Qualität von Gewässern und Böden beeinträchtigt. Vor diesem Hintergrund wird im Rahmen einer einjährigen Messkampagne das Auswaschverhalten eines 18 Jahre alten Gründachs sowie zweier neuer, unbegrünter Versuchsdächer untersucht. Darüber hinaus wird der potenzielle Rückhalt von Mecoprop in einem Retentionsbodenfilter quantifiziert. Die bisherigen Ergebnisse zeigen, dass Mecoprop auch nach vielen Jahren noch in relevanten Konzentrationen vom Gründach ausgewaschen wird (Mittelwert: 1,3 µg L-1). Im Regenabfluss von neuen, unbegrünten Bitumenbahnen wurden sogar 100fach höhere Konzentrationen festgestellt. Der Retentionsbodenfilter kann zwar mit einer Reinigungsleistung von 59% zu einer Reduktion der Frachten ins Gewässer beitragen. Eine wesentliche Verbesserung der Wasserqualität ließe sich aber vor allem durch den Verzicht auf mecoprophaltige Dachabdichtungen erreichen.

Ehrenreich, D. (2015): Ökobilanz zu Maßnahmen der Nährstoffreduktion im Kanalnetz.

Master Thesis. Fakultät Umweltwissenschaften, Institut für Siedlungs- und Industriewasserwirtschaft. Technische Universität Dresden

Zusammenfassung

Die europäische Wasserrahmenrichtlinie (EU-WRRL) aus dem Jahr 2000 schreibt eine Verbesserung der Gewässerqualität auf einen „guten ökologischen Zustand“ vor. Bis 2015 konnte dieses Ziel jedoch nicht erreicht werden. Der Überschuss an Nährstoffen in Oberflächengewässern ist ein Aspekt, der zum Misserfolg des Vorhabens beitrug. Eine Rolle spielen hierbei die Nährstofffrachten, die aus urbanen Gebieten über die Kanalisation in die Gewässer gelangen. In dieser Arbeit werden daher Maßnahmen untersucht, die zur Reduktion der Nährstoffemissionen aus dem Kanalnetz dienen. Es wird eine Ökobilanz zu ausgewählten Maßnahmen der zentralen Regenwasserbewirtschaftung durchgeführt. Die Maßnahmen werden hinsichtlich ihres ökologischen Aufwandes (Materialbedarf, Transport, Energiebedarf, etc.) und ihres ökologischen Nutzens (Nährstoffreduktion) analysiert. Dabei wird zwischen Maßnahmen im Trenn- und Mischsystem unterschieden. Im Trennsystem wer-den ein Retentionsbodenfilter (RBF), drei unterschiedliche Regenklärbecken (RKB), ein Lamellenab-scheider (LA) und eine Nachrüstung eines RKB mittels Lamellen untersucht. Im Mischsystem erfolgt eine Analyse von einem Regenüberlaufbecken (RÜB), einem Stauraumkanal (SK) und drei Stauraum-aktivierungsmaßnahmen. Zu diesen gehören eine Abflusssteuerung durch eine eingebaute Drossel-anlage und zwei Umbaumaßnahmen zur Nutzung des Speichervolumens von Überlaufkanälen. Der Vollständigkeit halber wurden ein vereinfachtes Modell einer Großkläranlage, einer Schlammbehand-lung sowie einer Klärschlammverbrennungsanlage (KSVA) in die Betrachtung miteinbezogen. Um eine Aussage über potentielle Umweltauswirkungen treffen zu können, werden für die Wirkungsab-schätzung unter anderem das Treibhauspotential (GWP), die marine (MEP) und Süßwasser Eutro-phierung (FEP) sowie zwei Toxizitätspotentiale betrachtet. Zudem erfolgt eine Analyse zum kumulier-ten Energieaufwand (KEA) fossiler und nuklearer Energieträger. In den Ergebnissen stellt sich die Infrastruktur als maßgeblicher Faktor für den ökologischen Aufwand heraus. Zudem spielt insbesondere im Mischsystem die zusätzlichen Aufwendungen auf der Kläranla-ge eine große Rolle. Der Aufwand für den Betrieb und die Wartung der Maßnahmen hingegen ist vergleichsweise gering. Im Trennsystem besitzen der Retentionsbodenfilter und der Lamellenab-scheider die geringsten negativen Umweltauswirkungen. Der Bau von Regenklärbecken geht diesbe-züglich mit weitaus höheren Auswirkungen einher. Im Mischsystem sind die Maßnahmen der Stau-raumaktivierung mit geringeren Umweltauswirkungen behaftet, als die Maßnahmen zum Bau neuer Speichervolumina.

Mutz, D. , Miehe, U. , Remy, C. , Sperlich, A. , Windelberg, G. (2015): Integrating Ozonation or Adsorption on Activated Carbon into Tertiary Wastewater Treatment: Environmental Impacts with Life Cycle Assessment.

p 1 In: 12th IWA Specialised Conference on Design, Operation and Economics of Large Wastewater Treatment Plants. Prague, Czech Republic. 6 – 9 September 2015

Zusammenfassung

The implementation of tertiary treatment at large wastewater treatment plants (WWTP) may be required in many WWTPs in Germany due to water quality targets defined in the Water Framework Directive (EU-WFD) and Bathing Water Directive (EU-BWD) of the European Union. Furthermore, potential environmental risks of organic micropollutants (OMP) from anthropogenic sources (i.a. pharmaceuticals, sweeteners) could require additional treatment steps for tertiary treatment in future. EU-WFD requires a “good ecological status” of all water bodies, which can lead to a need of enhanced phosphorus removal at large WWTP (>100’000 pe), targeting an effluent quality <100µg/L TP. Moreover, if a WWTP discharges upstream of bathing water, EU-BWD requirements have to be met. Hence implementing a disinfection step might be necessary. Different options for enhanced P-removal and disinfection have already been analyzed in their economic and environmental impacts (KWB 2013). Based on these results, both targets can be adequately met by coagulation with subsequent dual media filtration (DMF) and UV-disinfection (UV). On this basis, the present study focusses on the additional integration of a process for OMP-removal into a tertiary treatment scheme. Considered technologies for OMP-removal are oxidation by ozonation and adsorption by activated carbon (AC) either by dosing powdered activated carbon (PAC) or using filtration units with granulated activated carbon (GAC), respectively. These technologies increase the additional demand of energy and chemicals for tertiary wastewater treatment. WWTPs are already one of the major contributors of electricity demand at municipality level (UBA 2008), and further treatment steps may add up significantly in this environmental impact. In the present study, different options and process configurations for OMP-removal are integrated in a tertiary treatment with advanced P-removal and UV-disinfection, and the entire tertiary treatment train is then analysed in its environmental impacts using the methodology of Life Cycle Assessment (LCA). The goal of the LCA is to reveal the trade-off between local environmental benefits by higher effluent quality and global environmental impacts, e.g. an increasing CO2-footprint. With the methodology of LCA different tertiary treatment schemes are analysed in a holistic approach “from cradle to grave” (ISO 2006), which includes direct effects at water bodies through discharge, and indirect effects resulting from infrastructure, chemical and electricity demand by tertiary treatment and additional sludge treatment. The baseline scenario is defined as treatment of secondary effluent of an existing WWTP located in Berlin, Germany (1’500’000 pe) by DMF with coagulation and UV (Figure 1.1). Sludge from backwash of filtration units is considered in the LCA by a simplified model for sludge treatment and mono-incineration (SMIP). For integration of OMP-removal into tertiary treatment, 7 possible scenarios are compared in their environmental impacts (Figure 1.2): (1) Ozone+DMF+UV, (2) PAC-dosing+DMF+UV, (3) PAC-cycle+DMF+UV, (4) DMF+GAC-filter+UV, (5) DMF w/ GAC-layer+UV, (6) Ozone+DMF w/ GAC-layer+UV, or (7) parallel treatment by ozonation and PAC+DMF+UV, respectively. Each scenario is analysed with a low, medium, and high dosage of ozone or AC, displaying the whole range of economic feasibility and effluent quality targets (Table 1.1). The specific dosage of ozone and PAC are referred to DOC-concentration of the secondary effluent (12.8mg/l DOC). Data used for advanced P-removal and UV-disinfection are based on a previous study (Remy et al. 2014) using planning data from the WWTP operator considering process efficiency, infrastructure, energy and chemical demand. Data for OMP-removal technology are based on pilot plants and planning data from WWTP operator. For LCA, impact categories of ReCiPe Midpoint method are taken into account (Goedkopp et al. 2008), e.g. global warming potential (GWP) or freshwater eutrophication potential (FEP), and cumulative energy demand (CED) of fossil and nuclear resources (VDI 2012), and USEtox indicators (Rosenbaum et al. 2008) freshwater ecotoxicity (ETP) and human toxicity potential (HTP). Environmental benefits of tertiary treatment scenarios on the global scale can be seen in the FEP and ETP indicators. TP from secondary effluent is reduced from 320µg/l to 55µg/l TP after tertiary treatment. The global USEtox indicator ETP includes preliminary impact factors for seven measured OMPs (6 pharmaceuticals, 1 herbicide), neglecting potential toxic effects of metabolites or transformation products as limitation of the multi-fate model. Removal of OMP has a positive effect on ETP in all scenarios. However, background processes and heavy metal loads play a major role in the contribution to the global ecotoxicity indicator. On the contrary, a higher energy and chemical consumption lead to a significant increase of CED and GWP due to OMP-removal (Figure 1.3). Comparing baseline scenario (DMF+UV) with the gross GWP of a large WWTP, the CO2-footprint will increase by +11% (82g CO2-eq/m³). Ozonation increases the GWP by 23% to 37% depending on ozone dosage. Main contributors for GWP are electricity and liquid oxygen demand for ozonation. Highest effects on GWP are detected for the scenario “PAC-cycle+DMF+UV” with an additional CO2-footprint of 36% or 110%, respectively, which is mainly caused by emissions during production of AC. In summary, OMP-removal can double the GWP of an existing large WWTP in the worst case and thus contributes significantly to global environmental effects. Production of AC is a crucial parameter for scenarios using GAC or PAC. Hence, a sensitivity analysis is performed changing raw materials for AC production. AC production is modelled according to available data from Bayer et al. (2005) using 3kg of hard coal as resource for activation process and generating 1kg of virgin AC. Other possible resources for AC production can be lignite or coconut shells. Varying the type of resource reveals a high uncertainty in GWP. Considering scenario “PAC+DMF+UV” a possible reduction of -23% of net GWP using coconut shells or even an increase of net GWP by +32% using lignite is possible. Since specific discharge limits for OMP removal are not defined yet, a direct comparison between the considered scenarios is not possible, as they lead to different effluent qualities in OMP concentration. Thus, in theory a low dosage of PAC (1.0g/gDOC) may be sufficient to achieve certain effluent targets, whereas ozonation could require a high dosage (1.0g/gDOC) for the same quality, or vice versa.

Zusammenfassung

Im Rahmen des Projekte OgRe wurde das Ausmaß der Belastung von Regenablauf für Berlin durch ein einjähriges Monitoringprogramm in Regenwasserabfluss der Trennkanalisation unterschiedlicher Einzugsgebietstypen (Altbau, Neubau, Gewerbe, Einfamilienhäuser, Straßenablauf) untersucht. Ziel war, eine möglichst vollständige Erfassung organischer Spurenstoffe zu erreichen (einschließlich Identifizierung zusätzlicher Substanzen durch non-target-Analytik). Darüber hinaus sollte geklärt werden, inwieweit die unterschiedlichen Einzugsgebietstypen ein unterschiedliches Spektrum an Belastung durch Spurenstoffe aufweisen. Diese Informationen wurden dann genutzt, um eine Hochrechnung der über das Regenwasser in die Gewässer gelangenden Spurenstofffrachten für Gesamt-Berlin und einzelne Gewässerabschnitte zu ermöglichen. Die erhaltenen Frachten wurden verglichen mit modellierten Frachten abwasserbürtiger Spurenstoffe, die über Kläranlagenablauf in die Berliner Gewässer gelangen. Insgesamt wurden etwa 90 volumenproportionale Mischproben auf ein Set von etwa 100 Spurenstoffen analysiert. Zusätzlich wurden 12 Regenereignisse in der Panke beprobt, um Spitzenkonzentrationen regenwasserbürtiger Spurenstoffe im Gewässer zu ermitteln und ins Verhältnis zur Trockenwetterbelastung (5 Proben) zu setzen. Auch eine Untersuchung mikrobiologischer Parameter und der zeitlichen Dynamik konnten im Rahmen des Projektes durchgeführt werden.

Zusammenfassung

Managed aquifer recharge (MAR) is a widely accepted method for augmenting water supplies for potable and non-potable use. The success of the MAR system is often defined by a substantial removal of chemical and biological contaminants during subsurface passage. To determine removal rates and to differentiate between removal and overall attenuation due to dilution, estimation of mixing proportions is a key element of tracer applications. This report provides an overview of tracers suitable for MAR and discusses advantages and disadvantages for each tracer. The ideal tracer may be defined by: a natural or anthropogenic origin, a clear uneven distribution in the studied system (e.g. sharp contrast between source and native groundwater), non-toxicity (human and environmental), easy and cost-effective measurement, and a conservative (neither sorbed nor (bio-)chemical reactive) or at least predictable chemical or physical behavior. A huge number of tracers exist, each with advantages and disadvantage. Tracers can be dissolved (e.g. chloride, bromide), stable or radioactive isotopes (e.g. 18O, 3H), gaseous (e.g. SF6) or a physical properties (e.g. temperature). The use of heat as a tracer has several advantages over hydrochemical tracers. Temperature is inexpensive, easy and a robust parameter to measure. In contrast to chemical tracers, no laboratory analysis is required and the data is available immediately. Finally, a multi tracer approach (= 2 tracers) is always recommended, because the ideal tracer is rarely found. A reasonable combination is at least one conservative tracer (e.g. stable isotopes of water) with a retarded tracer (e.g. temperature) to evaluate short travel times from the point of recharge (e.g. riverbed or pond) to the recovery well.

Möchten Sie die „{filename}“ {filesize} herunterladen?

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.