Sprenger, C. , Monninkhoff, B. , Tomsu, C. , Kloppmann, W. (2016): Numerical and analytical models for natural water treatment systems in the Indian context.

p 317 In: Wintgens T., Nattorp A., Elango L. & Asolekar S. R. [eds.], Natural Water Treatment Systems for Safe and Sustainable Water Supply in the Indian Context: Saph Pani. IWA Publishing 10.2166/9781780408392

Abstract

Redox condition, in particular the amount of oxygen in groundwater used for drinking water supply, is a key factor for the drinking water quality as well as for the production well’s lifecycle. Thus, a process-based and quantitative understanding about the oxygen fluxes in groundwater systems is fundamental in order to predict e.g. the removal capacity of pollutants or in particular the likelihood of iron-related well clogging. Such well ageing is a major thread for well operators and objective in practice and science. The formation of iron oxides responsible for well clogging is mainly known for wells abstracting groundwater from unconsolidated aquifers with a distinct redox zonation. The accumulation of precipitates is primarily taking place at the slots of the well screens, but also affects aquifers, pumps and collector pipes. Several studies already identified interacting hydro-chemical and microbiological processes as major cause for the development of iron oxides in wells. They develop in the presence of dissolved species of iron and oxygen in the water. The co-occurrence of both, the dissolved iron and oxygen, is the result of a mixing of groundwater with different redox states. The abstraction of groundwater by wells is known to promote such mixing processes. Particularly, frequent water table oscillations with high amplitudes in contrast to natural conditions and managed aquifer recharge measures may deliver oxygen to groundwater. But the impact of different well management strategies on the sources and rates of oxygen delivery to aquifers was not studied in detail so far. Within the thesis presented here, oxygen fluxes to groundwater were qualified and quantified based on statistical, modelling, laboratory and field site studies and their impact on well performance was determined for different well operation schemes and different hydrogeological conditions. Processes were exemplarily investigated for the quaternary aquifers of Berlin, which are the exclusive source for the drinking water supply of the German capital. Analysis of design, operation, geological setting, hydrochemical composition and maintenance activities of Berlin’s drinking water wells illustrated the vulnerability of wells for clogging processes and revealed the relevance of detailed investigations on this topic. A general estimation of the two main oxygen delivering processes influencing groundwater aeration, air entrapment and bank filtration, was done by a generic transport model. Simulation of oxygen fluxes with regard to different hydrogeological and operational boundary conditions revealed air entrapment as major source. Oxygen delivery by bank filtration was subsidiary and strongly depending on flow gradients and permeability of the banks. Air entrapment due to oscillating water tables was quantified by aeration tests in column experiments under laboratory conditions. Results pointed at a downward shift of oxygen caused by repeated oscillations as a consequence of oxygen dissolution and advective transport of dissolved oxygen inside the column. A downward propagation of oxygen into the permanently water-saturated zone was not observed for switching intervals shorter than 24 hours. Such repeated short-termed oscillations led to an enrichment of oxygen, but with a constantly decreasing increment per oscillation. Oxygen degradation was not accounted for in simulation and inhibited in laboratory studies. But, in situ monitoring of oxygen at three selected well sites in Berlin provided a real insight into oxygen fluxes and their effects on well ageing processes under field conditions. The monitoring network included multi-level observation wells and vertical strings of oxygen sensors installed in the aquifer and inside the wells. Thus, it was feasible to measure changes in hydraulic conditions and redox dynamics. Oxygen distribution could be observed as a function of depth and recharge source in a high temporal and spatial resolution for the first time. It was possible to detect traces of oxygen in the well-near aquifer and inside the wells, which are sufficient to oxidize high loads of dissolved iron when supplied constantly. All three well sites showed oxygen distribution patterns, which significantly differed from the others. These variations referred not only to the initial distribution, sampled at idle equilibrium, but also to the progression of oxygen saturation during abstraction and recovery phases. Enrichment and downward propagation of oxygen as result of abstracting water could be observed at all well sites, although absolute concentrations varied strongly between the well sites. By this, it was possible to correlate oxygen variations to hydrogeological boundary conditions. Infiltrating oxic surface water via river, lake or artificial pond banks delivers high amounts of oxygen to the groundwater and can cause an enormous widening of the oxic zone towards the abstracting well. As a result, the oxic/anoxic interface moves downward close to the well once water is abstracted. But, clogging of wells abstracting bank filtrate or artificial recharge strongly depends on the residence times of the filtrate, the hydraulic connection between banks and groundwater and seasonal variations. Only under certain conditions a significant enhancement of clogging can be expected. To directly link well operation, oxygen delivery and ochre formation with well performance development, a well model scaled up to realistic proportions was designed, built and operated with natural groundwater. The tank experiment enabled to study distribution patterns of ochre formation with regard to the different structural zones of the well, including aquifer, filter pack and screen slots and its influence on pressure losses and well performance. It could be shown, that groundwater was enriched with oxygen during the tank passage by oscillating water tables and that permeability and specific well yield generally decreased over time. The distribution of ochre deposits in the well tank showed a distinct mineral zonation with high deposition rates of manganese and iron in the filter pack at the top of the well screen. Further, interfaces of aquifer and/or filter pack were strongly affected by iron deposits. Thus, preventing ochre formation is an appropriate measure. The preventive treatment of wells with hydrogen peroxide could be such a measure, but could also be a potential source for oxygen in well and filter pack. By reviewing the latest research activities and operator’s data and by investigating at laboratory and field site scale, the current treatment procedure was evaluated. Investigations revealed a clear improvement potential for the treatment with hydrogen peroxide. Impacts of the treatment were however low, especially if incrustations were already established. Results of column batch studies and field tests did not fully prove the effectiveness of the preventive treatment, but indicated that with higher concentrated solutions and an improved treatment procedure ochre formation can be retarded and rehabilitation potential can be improved. Another approach to prevent ochre formation is the classification of well sites considering their ageing vulnerability and the development of adapted operation schedules. At least such a measure can support a sustainable construction, operation and maintenance of wells. A statistical approach was used to quantify well ageing and to identify factors promoting well performance loss. Most appropriate clogging indicators could be identified and were used to analyse worst and best site conditions with regard to their impact on ochre formation. Accordingly, a well in high distance to the next surface water with a thick groundwater layer above the well screen situated in a confined aquifer with high redox potential gains the lowest ageing potential. Compared to worst site conditions and calculated for the mean life time of a typical Berlin drinking water well, this can account for a difference in well capacity of up to 90%. In addition to that, optimized rehabilitation intervals for the identified well classes based on their ageing potential could be exemplarily determined. Based on the results of this thesis, strategies for an optimized monitoring of well ageing processes and strategies for an adapted well management aiming at the reduction of ochre formation can be developed.

Weidner, C. , Houben, G. , Halisch, M. , Kaufhold, S. , Sander, J. , Reich, M. , Menz, C. (2016): Wellbore Skin in Mine Dewatering and Drinking Water Supply: Field Observation, Mineralogy and Hydraulic Effect.

p 8 In: IMWA 2016 Mining meeets Water - Conflicts and Solutions. Leipzig, Germany. 11-15 July 2016

Abstract

When it comes to well loss and efficiency, the occurrence of wellbore skin layers is one of the strongest influencing factors. Besides difficulties to remove the skin layer that is necessary during the drilling process, it is also not easily possible to determine if a skin layer is present in a well and whether or not it imposes a certain degree of well loss. With this work, three types of skin layers are presented (surface cake, deep-bed filtration, layered cake in the aquifer), that have been observed at dewatering wells excavated in open-pits of the Rhenish lignite mining district in western Germany. Disturbed and undisturbed samples were analyzed for their geochemical and mineralogical composition in order to better understand the formation of the skin layer types and their fate during well operation. Geochemical analysis revealed the skin layer to be mainly composed of quartz (˜ 40 wt-%), kaolinite/illite (˜ 30 wt-%), organic material (5-15 %) and secondary gypsum precipitates (up to 12.5 wt-%). Despite the high quartz contents, the granulometry yields high fractions of clay and silt (75-85 %). However, preferential flow paths, transecting the skin layer are created by micro-cracks and erosion-pathways which will cause a higher hydraulic conductivity than could be expected from the granulometry.

Abstract

Facilitating and improving decision-making in urban stormwater management is a key goal of the interdisciplinary research project “Concepts for urban rainwater management, drainage and sewage systems” (KURAS). By reinstating a more natural hydrological cycle, by increasing infiltration, evapotranspiration and stormwater reuse at the building or neighborhood level, e.g. via green roofs, pervious surfaces, swales and artificial ponds, to name but a few, stormwater management has the potential not only to reduce flooding and river degradation but also to improve landscape and habitat quality, the urban climate and resource efficiency, to reduce costs, and to respond more flexibly to uncertain future conditions. These multiple potential benefits have been valuated in a systematic way, thus providing a quantitative and comparative assessment of the effects of the various approaches to stormwater management as a basis for decision-making. An important element is the stakeholder involvement in planning in order to expose interests, resolve conflicts and to discuss existing financial, legal, administrative and knowledge-related barriers to adapted urban stormwater management. For two representative neighborhoods in Berlin, Germany, alternative and realistic stormwater management scenarios have been developed based upon an analysis of the current state and evaluated using the effect indicators. Central actors for stormwater management in Berlin are collaborating with other stakeholders in the sample neighborhoods to formulate and prioritize goals regarding the selection of measures, to discuss the evaluation results and to develop transition strategies. The presentation will focus on this experience of stakeholder participation in the design of stormwater management systems on the neighborhood scale. It will present preliminary findings to be translated into recommendations for policy makers and practitioners.

Abstract

In view of existing and future challenges, such as the results of climate change and the changing manner of water usage, the overriding target of the joint research project KURAS (Concept for urban stormwater management and wastewater systems), sponsored by the German Federal Ministry for Education and Research, was to formulate recommendations for the operation, expansion and adjustment of urban wastewater and stormwater infrastructures to the future. To this end planning methods have been developed in KURAS, in which a consequent evaluation of measures interlink with local requirements and challenges. The basic methods were elaborated within the project for the topics wastewater systems and management of stormwater and applied for Berlin case studies at quarter and catchment area level. For both topic areas it shows that an integrated, scale overlapping planning of measures for stormwater management and wastewater management can achieve an increased level of usage. The methods developed in KURAS are suitable for supporting such a planning. A standard employment necessitates additional solutions of a technical as well as regulatory nature.

Abstract

Im Rahmen eines Planspiels wurden für ein Stadtquartier Kombinationen der Regenwasserbewirtschaftung erstellt und wissenschaftlich bewertet. Die verwendete Methode kombiniert dazu lokale Bedingungen (Problemlage, Machbarkeit von Maßnahmen und lokale Ziele) mit einer Bewertung von 27 Einzelmaßnahmen hinsichtlich ihrer vielfältigen Effekte. Die Ergebnisse zeigen zunächst, dass eine skalenübergreifende Kombination von Maßnahmen vom Gebäude bis zum Kanaleinzugsgebiet ein großes Potenzial für die Verbesserung der städtischen Umwelt (Gewässer und Biodiversität) und Lebensqualität (Stadtklima, Freiraumqualität, Nutzen auf Gebäudeebene) hat. Die verwendete Methode erwies sich als gut geeignet für die Auswahl effektorientierter (und machbarer) Maßnahmen und für deren gezielte Platzierung in Problemräumen. Die Erfahrungen zeigen aber auch, dass die Methode optimiert werden muss, um eine bestimmte Zielerreichung (z.B. Kostenrahmen oder Einleitbeschränkung) während der Planung zu berücksichtigen.

Abstract

A total of 27 existing measures of stormwater management were studied across scales from building level (vegetated buildings, rainwater use) to city quarter level (infiltration, de-paving, artificial lakes and streams, decentralised treatment) and catchment level (centralised treatment, storage). For each measure, the same performance indicators were quantified based on literature, monitoring and simulation results regarding six potential benefits (water/energy saving potential, improvement of landscape quality, increase in biodiversity, reduced urban heat exposure, improvement of groundwater and surface water bodies), indirect resource use (life cycle assessment) and direct cost. Results show that each measure has its strengths and weaknesses. Thus, it is expected that different combinations of measures will lead to increased benefits for different locations/settings. The developed measurebenefit/cost-matrix may support the finding of such improved combinations and is currently tested in a research project regarding its potential for problem-oriented urban planning in Berlin, Germany.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.