Abstract

The challenge of water reclamation using membranes in this study was the quite unique wastewater composition resulting from a high share of biotech wastewater. The high content of organic matter and high concentrations of calcium, bicarbonate, and sulphate were considered as challenging for membrane processes. Consequently, an innovative ultra-tight ultrafiltration (u-t UF) membrane was developed and tested on-site at pilot scale. In comparison, a conventional UF and an open nanofiltration (NF) were piloted. The aim was to find the best pre-treatment option for reverse osmosis (RO) to reduce fouling and scaling and produce fit-for-purpose water; for example, cooling. Overall, the quality of the currently used water source was surpassed by the pilot plant. Only a standard post-treatment of the RO permeate was necessary for stabilisation. Results indicated that denser membranes only minimally reduced fouling of RO. An assessment comparing the treatment trains in a life cycle assessment using the data collected from the pilot operation (UF/NF operating settings, RO plant performance, and the design of multi-stage industrial scale RO) revealed lower greenhouse gas emissions compared to seawater desalination. However, if the RO brine treatment becomes mandatory, the greenhouse gas emissions from water reclamation and supply will be higher than those from freshwater supply.

Abstract

The use of activated sludge models (ASMs) is a common way in the field of wastewater engineering in terms of plant design, development, optimization, and testing of stand-alone treatment plants. The focus of this study was the development of a joint control system (JCS) for a municipal wastewater treatment plant (mWWTP) and an upstream industrial wastewater treatment plant (iWWTP) to create synergies for saving aeration energy. Therefore, an ASM3 + BioP model of the mWWTP was developed to test different scenarios and to find the best set-points for the novel JCS. A predictive equation for the total nitrogen load (TN) coming from the iWWTP was developed based on real-time data. The predictive TN equation together with an optimized aeration strategy, based on the modelling results, was implemented as JCS. First results of the implementation of the JCS in the real environment showed an increase in energy efficiency for TN removal.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.