Schroeder, K. (2007): Integrale Bewirtschaftung von Entwässerungssystemen.

p 19 In: TerraTec - Ausstellerforum Zentrum Umwelttechnik. Leipzig. 5. - 8.3.2007

Schroeder, K. (2007): Integrated Sewer Management.

p 17 In: II. International Water Conference in Berlin. Berlin. 12. - 14.9.2007

Abstract

Urban water courses are considerably degraded in terms of their hydrology, riparian and channel morphology, substrate heterogeneity and habitat features as well as water and sediment quality. In addition, the combined sewer overflows and the ecotoxicological impacts of its components lead to a change of the physical-chemical and microbial mass balance affecting the biocenoses of higher trophic levels. Combined sewer overflows are therefore an additional stress to the ecological status of the urban course of the River Spree and of its channels, which is damaged already by both preload and background load of the aquatic environment. With regard to the assessment of the ecological water status, the European Water Framework Directives gives priority to the aquatic biocenoses in their capacity as ecological quality parameters. Against this background, an immission-oriented approach for the assessment of combined sewer overflows has to describe also their impacts on the biocenoses of the macrozoobenthos, the fish fauna, the macrophytes and the phytoplancton. These biocenoses are protected against the harmful impacts resulting from CSO only if the modification of their physical and chemical environment is avoided or reduced to an ecologically tolerable level respectively. In case that unfavourable impacts cannot be completely eliminated, the degree of impairment and the number of damaging CSO discharge events, which appear to be acceptable, should be defined. The present study is based on the bibliographic study „ Impact of urban use on the mass balance and the biocoenosis of lowland rivers under special consideration of combined sewer overflows” and deals with the assessment of CSO impacts on the ecological situation of the urban Spree and the channels (Cyprinid water bodies). In general, the immissionoriented assessment of CSO impact on the biocenoses (macrozoobenthos, fish fauna) requires the observation of the intensity, duration and frequency of occurrence of the individual events based on the assumption that, due to the background pollution, top priority is currently given to the acute CSO impacts. Requirements for the protection of aquatic biocenoses are developed with regard to the target parameters oxygen and ammonium/ammoniac and ecological tolerances of the biocenotic subjects of protection, which are strongest influenced by CSO. Initially, it is discussed to what extent the already existing results from laboratory investigations can be transferred to field situations. Next to the commonly accepted threshold values for oxygen concentrations during continuous persistent loads, particular requirements for the oxygen balance in case of peak loads are formulated.

Abstract

The objective of the studies performed in the scope of the Integrated Sewage Management (ISM) project on combined sewer overflows in Berlin, Germany was to develop methods that would make it possible to assess wastewater management measures performed under the city’s water management permit as well as more sophisticated strategies (e.g., global real time control) through the application of water body-related criteria. For this purpose, a preliminary study was first performed to characterize the underlying water body-specific processes and hydraulic, physical, chemical and ecological parameters relevant to the status of Berlin’s surface waters (LESZINSKI et al., 2007a). The second step involved the development of a method for water quality-oriented assessment of wastewater management measures (LESZINSKI ET AL., 2007b). In addition to the already recognized thresholds for dissolved oxygen concentration during continuous, long-term water load conditions, particular focus was placed on formulating requirements for oxygen demand under peak load conditions. Ammonia toxicity due to sewage input, another important stress factor for aquatic ecosystems, was also analyzed and threshold values for both chronic and acute peak ammonia loads were defined. The results of the third phase of this research are described in this report. Two numerical simulation models (for urban drainage networks and surface waters) were combined and the feasibility of the developed method was evaluated based on the case of a combined sewer overflow event documented by the surface water monitoring. The simulations were performed using InfoWorksTM CS hydrological/hydrodynamic urban drainage network modeling software (ISM model) and the GERRIS/HYDRAX/Qsim unsteady ecosystem modeling system. The latter model was developed by the Federal Institute of Hydrology in Koblenz and is used by the Senate Department of Health, Environment and Consumer Protection (SenGesUmV). The present report describes the theoretical principles of the utilized models, the base of data available for analysis of the selected event, and the assumptions made in cases of missing input data for hydraulic modeling as well as for the water quality simulations. The one-dimensional hydraulic modeling results for the branched surface water system of the reach Berlin-Charlottenburg demonstrated that the hydraulic conditions can be simulated with satisfactory accuracy using the current data. In the case of water temperature, it was also possible to achieve a high degree of agreement between the measured and computed values in spite of the lack of highresolution temporal input data from the tributaries (Landwehr Canal, Panke River, BerlinSpandau Ship Canal). However, this was not the case for dissolved oxygen concentration, the main parameter used for evaluation of combined water treatment. The DOC simulations computed using input data based on a monthly sampling interval did not show satisfactory agreement with the online measurements in the water system. Dry-weather biological processes, which were associated with high-level, short-term oxygen enrichment or consumption, could not be depicted in the simulations. After completion of the water quality simulations, the effect of variation of individual input parameters was assessed. This analysis showed that no significant improvement of agreement with the measured values could be achieved by adjusting the assumptions for individual parameters (chlorophyll-a and BSB5). In the case of ammonia, the second most important parameter, the available sampling data from the tributaries in the investigated water system were collected only once a month, if at all. Therefore, it cannot be expected that the temporal distribution of this parameter was correctly reflected by the model. The number of validation measurements taken within the water system was also insufficient. Summarizing the results of the study of the linked urban drainage/surface water quality model, which was tested for the first time, it can be concluded that InfoWorks CS and GERRIS/HYRDRAX/Qsim provide problem-oriented simulation tools for reaching the objective of ISM study of assessing various scenarios for reduction of impacts from combined sewer overflows. By contrast, the available data are deficient and do not allow to adjust and calibrate the models to meet the specific needs of this task, particularly in light of the fact that short-term effects of combined sewer overflows are to be analyzed.

Pawlowsky-Reusing, E. , Meier, I. , Schroeder, K. (2007): Application of InfoWorks CS® for the Evaluation of CSO-Impacts in Berlin.

p 3 In: International User Conference Wallingford Software. Wallingford, UK. 11-13.9.2007

Abstract

The development of the integrated control of sewage network and wastewater treatment plant has progressed during the last decade. Nevertheless, an operational implementation of the concepts for huge, complex systems has hardly been realised. That was an obvious reason to initiate the project "Integrated Sewage Management (ISM)". The ISM project aimed at the development of strategies for an integrated management of the Berlin sewage system consisting of sewer networks (both, combined and separate system), pump stations, pressure mains and wwtp. For these purposes a numerical model of the collection system has been built up. Those catchments have been chosen that have a significant quantity of wastewater and are connected to at least one of the three main wastewater treatment plants of Berlin (Ruhleben, Waßmannsdorf and Schönerlinde). To enable an evaluation of total emissions it was necessary to incorporate not only catchment area and collection system but also the wwtp into the model. Furthermore, the Berlin specific transport of wastewater through pressure mains had to be considered. Both, advective pollutant transport and the limiting pressure situation had to be taken into account. An integrated model of collection system, pressure mains and wwtp has been set up for the catchment of wwtp Ruhleben for the study of a global control concept. Those processes that were of particular importance for the control concepts or had a significant influence on the criteria (derived from the objectives) had to be simulated adequately. Hence, for the Berlin model the main attention was paid to an accurate reproduction of in-pipe storage activation and the transport of wastewater through the pressure pipes. A sufficient set of data was available to model the system structure. For process parameter estimation the necessary information was taken from the operational SCADA system. Some gaps in the data could be closed by additional measurement campaigns (Bln VII, 2001; Bln X, 2002; Heiligensee, 2003). For modelling the collection system the dynamic flow routing model InfoWorks CS of Wallingford Software Limited has been chosen due to its user-friendliness (window navigation, GIS) and comprehensiveness (pollutant load calculation, long-time simulation, spatial rainfall distribution, rtc module). A suitable approach to the simulation of the Berlin pressure mains was found to be based on EPANET 2 of the U.S. Environmental Protection Agency. The software SIMBA® 5 of ifak System GmbH has been used to simulate the dynamic treatment processes. For the activated sludge conversion part the Activated Sludge Model No. 1 (ASM 1) has been used. The three models have been coupled in sequence on the basis of simple input and output files. Further on, in the framework of three sub studies the ISM model has been applied to operational questions. The applicability of the ISM model for the assessment of the impact of the NPA control on the wwtp was tested. NPA stands for “new pump automatic (Neue Pumpen Automatik)” and signifies a control concept that is implemented in the framework of the LISA project (BWB). The inflow to wwtp Schönerlinde has been simulated for one rain event and the NPA control of the pump stations could be simulated well on the basis of the InfoWorks rtc module. Furthermore, the ISM model has been applied to evaluate a concept for a level dependant real-time control (Pegelgesteuerte Förderstromregelung) of sewage pump stations. The idea of the concept was to build an easy function that allowed continuously varying the pumpage and implicitly managing available inline storage capacities within the trunk sewers. The objective was to smooth the delivery towards the treatment plant to avoid peak loads. The evaluation showed that it is possible to manage available inline storage volume by applying the control function. But only if there is an adequate retention volume of around 60.0 m³/ha Aimp or more a significant improvement of the flow characteristic towards the wwtp is possible. Consequently, in Berlin only two catchments have the potential for the introduced control concept (Charlottenburg III und Ruhleben). Finally, the effects and the benefit from global pump station control in comparison to local control have been studied on the basis of the integrated model. The assessment of the Berlin drainage system that was carried out before arrived at the conclusion that there is a high potential for the control of the total system. The positive rating can partly be ascribed to the high storage volume that can be activated within the trunk sewers and the high number of pump stations that are used as actuators. However, this potential is already used by locally controlling the pump stations and storing sewage in the collectors. The potential of a global control of sewage pump stations arises from the non-uniform distribution of rainfall and the non-uniform distribution of storage volumes over the system. Those conditions usually lead to a non-uniform utilisation of storage capacities and further on to sewer overflows that cannot be balanced by local control. A look on the simulated total emissions showed that concerning discharged quantities the load from the wwtp is highly dominant, since most of the time (under dry weather conditions) wwtp effluents are the only impact on the receiving water. Furthermore, the global control concept only works during rain situation and does not have an influence on dry weather effluents. Consequently, the influence of global control on yearly total emissions is marginal. Nevertheless, it could be shown that global control can avoid peak load situations at the inflow to the wwtp and consequently reduce peak loads in the effluent. The control concepts had a significant influence on the emissions from combined sewer overflows. The reduction of sewer overflows plays a prominent role since they present a highly dynamic impact on the water body. The simulations showed that on average during periods of cso 2.5 t COD/h enter the receiving water. Compared to that load the continuous impact from the wwtp effluent was only 0.4 t COD/h. Moreover, due to the high fraction of biodegradable organic substrate the impact from combined sewer overflows is of special relevance. In contrary to the refractory COD from wwtp effluents, 60 % of the COD from combined sewer overflows are biodegradable leading to extreme oxygen depletion within the receiving water. It could be shown that under current conditions at the wwtp (rain weather capacity of wwtp Ruhleben = 6700 l/s) a local control (= local automation) of the pump stations has an adverse effect on the performance of the sewage system. In contrary to an optimum coordination of the pump stations local control leads to an overloading of the wwtp and an increase of emissions from combined sewer overflows by 9 % (volume), 15 % (COD) and 20 % (TKN). Due to that reason the current operation provides for manual interventions in case of rain events to coordinate the delivery of the pump stations. This necessity will persist under the LISA automation. Assuming a future upgrade of wwtp Ruhleben and an increase in rain weather capacity up to 7650 l/s, global pump station control will result in cso emissions that are 19 % (volume), 20 % (COD) and 25 % (TKN) below that under local control (= local automation). The major deliverable of the ISM project is the model for the Berlin collection system (18 combined and 29 separate sewer systems that are connected to the three main wastewater treatment plants Ruhleben, Waßmannsdorf and Schönerlinde). The further application and maintenance of the sewer model will take place at BWB, department NA-G. The scope of studies that will be supported by the model covers operational planning as well as general, conceptual and investment planning (storage optimisation, problem of parasite water). Concerning the implementation of the global control concept that has been developed in the framework of the ISM project first tests shall be carried out in 2006 and 2007. Therefore, the follow-up project EVA (Entscheidungshilfesystem zur Verbundsteuerung von Abwasserpumpwerken / Decision support system for global control of sewage pump stations) was planned at KWB to enable support and a further cooperation between KWB and BWB. The algorithm has to be adapted to the operational and technical boundary conditions and a detailed practical planning in terms of control engineering has to be carried out. The main prerequisite for an implementation of the introduced control concept is the technical ability of the pump stations to increase delivery beyond the value of 2 * Qd,16. Simultaneously, an authorisation is necessary to introduce a flexible regulation of the pump station’s rain weather delivery off the value of 2 * Qd,16 as demanded nowadays by the Berlin water authority. If the necessary data is available (usually given by the existing scada system of BWB) and if the used pumps can be controlled according to the above-stated technical requirements, thestudied control concept can be implemented without any further constructional investment.

Schroeder, K. , Pawlowsky-Reusing, E. (2006): Adapted integrated modelling of drainage systems dominated by wastewater pump stations.

p 8 In: 7th International Conference on Urban Drainage Modelling and 4th International Conference on Water Sensitive Urban Design. Melbourne, Australia. 2. - 7.4.2006

Abstract

The use of numerical models has become state of the art in planning, designing and analysing the urban sewage system. To evaluate the functioning of a complete system and to study the interaction of its subsystems integrated models can be used, incorporating catchment area, collection system, wastewater treatment plant and also receiving water and groundwater body. The paper introduces a structured, problem-oriented methodology for the setup of integrated models. Considering the case study of Berlin the introduced approach is illustrated. An emphasis is placed on the necessity for the selection of adequate model components. In Berlin this aspect is of particular importance for the modelling of wastewater transport through pressure mains that is governed predominantly by pump stations. Finally, the use of the Berlin model for the evaluation of a global pump station control concept is presented. It can be shown that besides the possibility of total system analysis and evaluation a major benefit from integrated modelling is the consideration of the interaction of the system’s subcomponents.

Abstract

Urban water courses are considerably degraded in terms of their hydrology, riparian and channel morphology, substrate heterogeneity and habitat features as well as water and sediment quality. In addition, the combined sewer overflows and the ecotoxicological impacts of its components lead to a change of the physical-chemical and microbial mass balance affecting the biocenoses of higher trophic levels. Combined sewer overflows are therefore an additional stress to the ecological status of the urban course of the River Spree and of its channels, which is damaged already by both preload and background load of the aquatic environment. With regard to the assessment of the ecological water status, the European Water Framework Directives gives priority to the aquatic biocenoses in their capacity as ecological quality parameters. Against this background, an immission-oriented approach for the assessment of combined sewer overflows has to describe also their impacts on the biocenoses of the macrozoobenthos, the fish fauna, the macrophytes and the phytoplancton. Initially, the most important factors, mechanisms and processes determining the mass balance of a water course are described. Particular attention is given to the mass balance of eutrophic lowland streams and rivers and of river-lake–systems. In this context, the abiotic mass balance is discussed together with the biotic use of resources. After introducing the basic processes of the mass balance, the impacts of the anthropogenic use on these processes are subsequently described with regard to Berlin’s specific water resources environment. The result is a compilation of the hydraulic, physical-chemical and ecological parameters relevant to Berlin’s water resources serving for water quality assessment purposes. Starting from the ecological processes disturbed by the anthropogenic use, the potential effects of the combined sewer overflow are examined. The parameters selection is concentrated on the essential processes connected to combined sewer overflow issues. Based on the large number of stress factors and their interactive impact system, those influences of the combined sewer discharge are worked out which have to be categorised as particularly jeopardising and which are important target values for the future water quality simulation. Due to the high background load, the highest priority has to be given to the acute load caused by nutrients and carbon load peaks resulting from combined sewer discharges, since they overcharge the self-cleaning potential of the urban course of the River Spree and its channels. Even if the organic substances and the chemical contaminants discharged lead to chronic loads, the main objective is to avoid to the greatest possible extent the temporary but extremely hypoxic conditions, since combined sewer overflows cause fish die-offs when the water resources situation is already critical. Primarily, the water quality modelling has to be concentrated on the realistic mapping of the highly dissolved concentration charts of the target parameters oxygen and ammonia, since the degree of the biocenoses’ damage is rather determined through discharge duration, discharge intensity and frequency than through the medium rates of pollutant loads.

Sonnenberg, H. (2006): Untersuchungen zur integrierten Modellierung von Freispiegel- und Druckabfluss im Berliner Abwassersystem.

Internship Report. Fakultät III Prozesswissenschaften, Institut für Technischen Umweltschutz. Technische Universität Berlin

Abstract

Real-time control of urban drainage systems allows activating capacities of storm water storage and wastewater treatment that were not used before. The historically developed structure of the Berlin combined sewerage, along with its aforementioned properties, allows per se a systematic management of the sub-systems. In the course of rehabilitation works the implementation of local regulators already opened additional storage reserves. Additionally, the potential of global control concepts for sewerage, pump stations and treatment plants is studied within the framework of the project “Integrated Sewage Management” to increase the systems efficiency. Especially, a coordination of the currently locally controlled pump stations entails a reduction of sewer overflows and hence an enhanced protection of the environment. For the catchment of wwtp Berlin-Ruhleben an integrated model of the collection system, pump stations, pressurised mains and the wwtp itself has been built up in order to evaluate different scenarios of global pump station control in comparison to a local control scenario (reference). Special attention was paid to the discharges from CSOs. Due to the high dynamic of these events and the high fraction of biodegradable organic substrate within the effluents, the impact on the water body over this path plays an important role. Concerning CSOs a maximum reduction of 14 % (COD load) and 20 % (TKN load) could be achieved. In conclusion it can be stated that a reduction of total emissions from the sewage system can be achieved by operating the pump stations in a global control mode. Furthermore, the main improvement can be observed for the discharges from combined sewer overflows.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.