Seis, W. (2012): Risk assessment auf Braunschweig wastewater reuse scheme.

Kompetenzzentrum Wasser Berlin gGmbH

Abstract

Risk-based management approaches are more and more used in the water sector and are promoted by the WHO. As a first step towards an overall risk-based management approach of the agricultural wastewater reuse concept of Braunschweig this report conducts quantitative microbial risk assessment (QMRA) and quantitative chemical risk assessment (QCRA) of heavy metals. Scenarios for microbial risks are conducted for fieldworkers, nearby residents and children ingesting soil using a 1000 trial Monte Carlo Simulation. As a tolerable value of risk an additional disease burden of 1 µDALY is set following the current WHO guidelines. For heavy metals impacts on the terrestrial and aquatic ecosystems as well as on human health are assessed using the methods outlined in the European Union Technical Guidance Document on Risk Assessment (TGD). Concerning microbial risks risk-based targets are set in terms of additional required pathogen reduction in the STP Steinhof. Based on the model results an additional reduction of 1.5log units is derived for viruses, for which the highest annual risks of infection per person per year (pppy) is calculated in all scenarios. Concerning heavy metals the model indicates an increasing tendency of soil concentrations over time and identifies Cd as the only metal which is currently of concern. Risk reduction measures should be considered for this metal. Recommendations are given concerning necessary validation and additional monitoring for eliminating uncertainties within the model.

Abstract

The research project CoDiGreen (2010-2012) targets the optimisation of energy and nutrient recovery in the wastewater treatment schemes of Braunschweig and Berlin. Therefore, pilot experiments are conducted to test the effect of addition of co-substrates (grass silage, topinambur) and the thermal hydrolysis of excess sludge on the biogas yield of anaerobic digestion. In addition, co-digestion of grass silage is also tested in a full-scale digestor of the wastewater treatment plant (WWTP) Braunschweig-Steinhof. Beside the experimental part, the environmental footprint of the wastewater treatment scheme in Braunschweig and the sludge treatment line in WWTP Berlin-Waßmannsdorf is analysed with Life Cycle Assessment (LCA) to identify potentials for optimisation and assess selected technical options in their effects on the environmental profile. Finally, a market review of the concept of agricultural reuse of effluent and sludge in Braunschweig is conducted to get an overview of the market situation, and a risk assessment is initiated to identify potential risks associated with this practice. The results of the pilot experiments show that both the addition of co-substrates and thermal hydrolysis can substantially increase the biogas yield and quality (CH4 content) during mesophilic digestion (HRT = 20d). Methane yields can be increased by 10%, 9% and 13% for thermal hydrolysis of excess sludge, addition of grass silage (+10% TS), and the combination of both (if the methane yield is only related to the VS of the sludge, the increase was 10%, 31% and 38%). A two-step digestion with intermediate hydrolysis (“DLD”) yields +19% CH4. No exceedance of legal requirements for inorganic and organic pollutants can be detected, whereas lab-analysis indicate positive impacts on sludge dewaterability and polymer demand for dewatering. For a full scale realisation of co-digestion it can be estimated that a 100.000 PE WWTP would require approximately 30 ha of extensively cultivated area to add +10% VS of grass substrate. However, the promising results of co-digestion with grass cannot be confirmed in full-scale trials, where only -8% of biogas yield can be measured (+2% if related to the VS of the sludge only). Even though the technical feasibility of grass addition can be shown, operational difficulties (fibre size, hydraulic mixing, low HRT) seem to prevent the realisation of the maximum potential of grass addition in full-scale. The environmental assessment of the systems in Berlin and Braunschweig reveals a high degree of energy production in both systems, lowering associated impacts of carbon footprint and other environmental impacts. However, potentials for optimisation are identified in terms of energy production and nutrient recovery, and recommendations for the future testing of technical options are given based on the scenario analysis within the LCA. Environmental benefits of the reuse approach in Braunschweig are quantified and relate mostly to the lower discharge of nutrients and other pollutants into surface waters. The normalised environmental profile underlines the primary functions of wastewater treatment (= protection of surface waters), which should not be compromised while optimising energy demand and carbon footprint.

Abstract

Das Forschungsprojekt CoDiGreen (2010-2012) zielt auf eine Optimierung der Rückgewinnung von Energie und Nährstoffen in der Abwasserbehandlung in Braunschweig und Berlin. Dafür werden in Pilotversuchen die Auswirkungen einer Zugabe von Co-Substraten (Grassilage, Topinambur) und einer thermischen Druckhydrolyse des Überschussschlamms auf den Biogasertrag der Faulung untersucht. Zusätzlich wird die Co-Vergärung von Grassilage im großtechnischen Maßstab in einem Faulturm des Klärwerks Braunschweig-Steinhof getestet. Neben dem experimentellen Teil wird über eine Ökobilanz der ökologische Fußabdruck des Abwassersystems in Braunschweig und der Schlammbehandlung im Klärwerk Berlin-Wassmannsdorf analysiert, um Optimierungspotential zu erfassen und anhand ausgewählter Szenarien zu bewerten. Abschließend werden vergleichbare Konzepte der landwirtschaftlichen Wiederverwendung von Klarwasser und Schlamm in einer Marktstudie ermittelt und über eine Risikobewertung potentielle Gefahren dieses Systems identifiziert. Die Pilotversuche zeigen, dass sowohl die Zugabe von Co-Substraten als auch die thermische Hydrolyse einen substantiellen Gewinn an Biogasmenge und –qualität (CH4Gehalt) in einer mesophilen Faulung (Verweilzeit: 20d) ermöglichen kann. Die Methanerträge können um 10%, 9% und 13% durch thermische Hydrolyse von Überschussschlamm, Zugabe von Grassilage (+10% FS) und eine Kombination beider Maßnahmen gesteigert werden (sofern der Methanertrag lediglich auf den oTR des zugeführten Schlamms bezogen wird, betrug die Steigerung 10%, 31% und 38%). Eine zweistufige Faulung mit zwischengeschalteter Hydrolyse („DLD“) erbringt +19% CH4. Für anorganische und organische Schadstoffe werden dabei vorgeschriebene Grenzwerte der aktuellen Klärschlammverordnung nicht überschritten. Weiter zeigen Laboranalysen einen positiven Effekt auf die Entwässerbarkeit des Schlamms und den Bedarf an Polymeren. Leider können die vielversprechenden Ergebnisse der Co-Vergärung mit Gras in der Großtechnik nicht bestätigt werden. Für eine großtechnische Realisierung einer Co-Vergärung lässt sich abschätzen, dass für 100.000 EW ca. 30 ha extensiv bewirtschafteter Fläche erforderlich sind, um 10% oTR an Gras in Bezug zum oTR des Rohschlamms zu erzeugen. Leider können die vielversprechenden Ergebnisse der Co-Vergärung mit Gras in der Großtechnik nicht bestätigt werden, in der nur -8% Biogasertrag gemessen werden (+2% wenn der Methanertrag lediglich auf den oTR des zugeführten Schlamms bezogen wird). Obwohl die technische Machbarkeit der Graszugabe gezeigt werden kann, scheinen betriebliche Probleme (Größe der Fasern, hydraulische Durchmischung, niedrige Verweilzeit) die Umsetzung des maximalen Potentials der Graszugabe in der Großtechnik zu verhindern. Die Bewertung der Umweltwirkungen der Systeme in Berlin und Braunschweig zeigt eine hohe Eigenenergieerzeugung in beiden Systemen, so dass dadurch der Treibhauseffekt und andere relevante Umweltwirkungen vermindert werden. Dennoch kann noch Optimierungspotential bei der Energie- und Nährstoffrückgewinnung aufgezeigt werden, zu dessen Erschließung auf der Grundlage einer Szenarienanalyse Empfehlungen formuliert werden. Die Umweltvorteile der Wiederverwendung in Braunschweig zeigen sich vor allem in einer verminderten Emission von Nähr- und Schadstoffen in die Gewässer. Die Normalisierung der Umweltwirkungen unterstreicht die Bedeutung der Primärfunktion der Kläranlage (= Schutz der Oberflächengewässer), die durch Optimierung von Energiebedarf und Treibhausgasemissionen nicht eingeschränkt werden sollte. Die Risikobewertung der Braunschweiger Systems folgt dem HACCP-Konzept und quantifiziert Risiken für die menschliche Gesundheit durch Krankheitserreger und Schwermetalle in der Landwirtschaft und ökologische Risiken durch Schwermetalle. Potentielle Risiken der Wiederverwendung werden auf Grundlage quantitativer Modelle von Umweltverhalten und Exposition identifiziert (Viren, Cadmium für Menschen, Zink für Ökosystem) und sollten durch entsprechende Messprogramme überwacht werden. Schließlich werden basierend auf den Projektergebnissen Empfehlungen zur Optimierung der Energie- und Nährstoffrückgewinnung in der Abwasserbehandlung in Berlin und Braunschweig formuliert, um letztlich die negativen Umweltwirkungen zu minimieren und potentielle Risiken im Betrieb zu vermeiden.

Abstract

Until around 2004, the term riverbank filtration (RBF) or simply bank filtration (BF, a unified term for river and lake bank / bed filtration) was not commonly used in context to drinking water supply in India. The abundant recharge of traditional dug wells (used for drinking and irrigation) located near surface water bodies (mainly rivers but also some lakes) by very low-turbidity water via natural bank filtration during and after the monsoon has been recognised in India for a very long time. Induced bank filtration has been suggested in the 1970s to address the growing agricultural irrigation demand in the alluvial plains along the Ganga River by inducing recharge from surface water bodies during and after the monsoon (Chaturvedi and Srivastava 1979). Documented evidence till date suggests that induced bank filtration has been used in India for at least 56 years, although even older BF systems may exist. In Nainital, bank filtrate has been abstracted from Nainital Lake since 1956 (Kimothi et al. 2012). BF supplements existing surface and groundwater abstraction for drinking water supply in the cities of Ahmedabad (by the Sabarmati River), Delhi and Mathura (Yamuna) and Nainital (Nainital Lake); on the other hand in Haridwar and Patna (Ganga), and Medinipur and Kharagpur (Kangsabati), BF is used as an alternative to surface water abstraction and to supplement groundwater abstraction (Sandhu et al. 2012). Considering the continuously growing demand for drinking water in sufficient quantities, the emphasis at many BF sites has traditionally been on maximising the volumes of raw water abstracted. Furthermore, the results of a fact-finding study (Ray and Ojha 2005) on the use of BF for drinking water production in India on one hand confirmed that a number of river-side communities have been already using BF for a long time, but that on the other hand only scarce information on the hydrogeological conditions and water quality of these BF sites existed. Holistic investigations on water quality aspects and sustainability (qualitative and quantitative) of these existing BF sites began only after 2004. Water quality investigations conducted at the BF sites of Srinagar by the Alaknanda river (Ronghang et al. 2011), Haridwar and Nainital (Dash et al. 2008, 2010; Sandhu et al. 2011a), Delhi (Sprenger et al. 2008; Lorenzen et al. 2010) and Mathura (Singh et al. 2010; Kumar et al. 2012) and Patna (Sandhu et al. 2011b) showed that the main advantage of using BF in comparison to direct surface water abstraction lies in the removal of pathogens and turbidity. The surface water concentration of trace organic contaminants and their removal at the investigated sites has not been widely investigated, but has shown to be high at sites in Delhi and Mathura (Sprenger et al. 2008; Singh et al. 2010). For conventional treatment, high concentrations of organic contaminants requires high (40–60 mg/L) doses of chlorine prior to flocculation thus creating a greater risk for formation of carcinogenic disinfection by-products, as reported in Mathura (Singh et al. 2010; Kumar et al. 2012). In such situations BF is advantageous as a pre-treatment in order to reduce the necessary doses of chlorine prior to flocculation. Additional advantages of BF may also be seen during the monsoon season principally in the removal of turbidity and pathogens, as well as in the removal of color and dissolved organic carbon (DOC), UV absorbance, turbidity, total and thermotolerant coliform counts, endocrine disruptor compounds and organochlorine pesticides (Dash et al. 2008, 2010; Sandhu et al. 2011a; Thakur et al. 2009a, 2009b; Sprenger et al. 2011; Mutiyar et al. 2011). BF, however, does not present an absolute barrier to other substances of concern (e.g. ammonium) and some inorganic trace elements may even be mobilized. This has been observed in Delhi which has poor surface water quality (Sprenger et al. 2008), at which extensive post-treatment is applied to remove high levels of ammonium. The objective of this deliverable is to provide an overview of known BF schemes in urban areas of India where the abstraction of bank filtrate is intentional. The main water quality issues of concern are highlighted. Related published and unpublished data, as well as new data collected since the commencement of the Saph Pani project in October 2011, is presented for the BF schemes in Haridwar, Nainital, Srinagar (by the Alaknanda river in Uttarakhand), Delhi Mathura and Satpuli (by the Eastern Nayar river in Uttarakhand).

Linge, N. (2012): Aufbau einer MS-Access-Datenbank zur Versuchsdokumentation.

Internship Report. Fakultät Mathematik/Naturwissenschaften. Hochschule Zittau/ Görlitz

Abstract

Im Rahmen der Arbeit soll basierend auf einem gemeinsam mit den Projektpartnern entwickelten Probenahme-Protokoll, siehe Tabelle 11, eine relationale Datenbank zur Erfassung aller Proben und Versuchsergebnisse erstellt werden. Da bis zum jetzigen Zeitpunkt noch keine Datenbank existiert, die in der Lage ist alle Daten der Projektpartner zusammenzuführen, war ein Austausch nur bedingt möglich. Eine Zusammenführung aller Daten für die statistische Auswertung ist somit fast nicht zu verwirklichen. Nur mit Hilfe der Datenbank ist ein einfacher Austausch sowie eine gesicherte Datenzusammenführung möglich. Das Praktikum beinhaltet die Mitarbeit an der Konzeption einer solchen Datenbank sowie die selbständige Umsetzung in Microsoft Access.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.