Pilger, M. L. (2018): Überflutungskarten anhand von Social Media Daten - Erhebung, Auswertung und Validierung am Beispiel von zwei Starkregenereignissen in Berlin.

Bachelor Thesis. Landnutzung und Wasserbewirtschaftung. Brandenburgische Technische Universität Cottbus - Senftenberg

Abstract

Das Ziel der Arbeit war, mit Hilfe von Sozial Media Daten Starkregenereignisse auszuwerten und Überflutungskarten zu erstellen. Da Starkregen in Deutschland in Zukunft häufiger auftreten wird, erscheint es sinnvoll, Methoden zu entwickeln, die, auch perspektivisch proaktiv, bei der Auswertung, Lokalisierung und Ausmaß von Ereignissen helfen können. Das Konzept, Social Media Daten zu nutzen, ist nicht neu. Es ist als „Crowdsourcing“ bekannt und wird bereits seit Jahren in vielen Bereichen eingesetzt. Es wurden insgesamt zwei Starkregenereignisse zur Untersuchung ausgewählt. Das erste Ereignis fand vom 29.06.2017 bis zum 30.06.2017 statt. Das zweite Ereignis ging vom 22.07.2017 bis zum 29.07.2107. Die Regenmengen der beiden Regenereignisse wurden mithilfe von Regenschreiberdaten der Stadt Berlin ausgewertet. Die Social Media Daten wurden von den Plattformen Facebook, Twitter, YouTube und Google gesammelt, entsprechenden Orten in Berlin zugeordnet und ausgewertet. Mit diesen Daten ließen sich Überflutungskarten erstellen. Hinzu kamen die Einsatzdaten der Berliner Feuerwehr im Rahmen dieser Ereignisse. Die anhand der Social Media Daten erhaltenen Überflutungsdaten wurden mit den Regenschreiberdaten und den Feuerwehreinsatzdaten abgeglichen und auf ihre Korrelationen untersucht. Die drei Datensätze für sich alleine genommen haben Vorteile und Nachteile ergänzen sich aber gegenseitig sehr gut. Bei einem Abgleich lässt sich dann ein Ereignis gut in seiner Länge und in seinem Ausmaß beschreiben. Die entwickelte Methode kann als direkter Überflutungsnachweis unter Beachtung von Einschränkungen, wie Bildqualität oder Zuordenbarkeit von Social Media Daten, dienen. Darüber hinaus bietet die Nutzung von Social Media Daten eine gute Ergänzung und Möglichkeit zur Validierung und Kalibrierung von Überflutungsmodellen.

Hofmann, R. (2018): Multivariate Datenanalyse zur Erfassung und Typisierung von Quellen umweltchemischer Frachten im Berliner Regenwasser.

Master thesis. Bauingenieur- und Geoinformationswesen. Beuth Hochschule für Technik Berlin

Abstract

Im Forschungsprojekt KUBAS (Konzepte für urbane Regenwasserbewirtschaftung und Abwassersysteme) wurde eine Methode vorgeschlagen, mit der Maßnahmen der Regenwasserbewirtschaftung für konkrete Stadtquartiere ausgewählt und platziert werden können. Ende 2016 wurde die "KURAS-Methode" als Ausgangspunkt für die zukünftige dezentrale Regenwasserbewirtschaftung in der Koalitionsvereinbarung der neuen Regierung des Landes Berlin zur Umsetzung in die Praxis und zur Weiterentwicklung festgeschrieben. Dadurch werden aktuell in verschiedenen Neubau- und Sanierungsvorhaben in Berlin Elemente der Methode eingesetzt; insbesondere der Ansatz, dass die Maßnahmenauswahl erst nach einer Festlegung nicht-monetärer Ziele erfolgt, wird dabei berücksichtigt. Die Anwendung in der Praxis erfordert aber auch eine Vereinfachung (z. B. Reduktion der Ziele) und Weiterentwicklung der Methode. Diese Anpassung wird durch das Forschungsprojekt netWORKS 4 unterstützt, welches wichtige sozio-kulturelle Ziele berücksichtigt und konkrete Planungsworkshops in Berlin begleitet.

Abstract

Im BMBF-Forschungsprojekt KURAS wurde eine Methode vorgeschlagen, mit der Maßnahmen der Regenwasserbewirtschaftung für konkrete Stadtquartiere ausgewählt und platziert werden können. Hinsichtlich der möglichen Ziele geht die Methode über die wasserwirtschaftliche Wirkung hinaus und betrachtet zusätzlich Effekte auf Umwelt (Grundwasser und Oberflächengewässer, Biodiversität) und Bewohner (Stadtklima, Freiraumqualität, Gebäudeebene) sowie den Aufwand an Kosten und Ressourcen.

Abstract

POWERSTEP aims to demonstrate energy-positive wastewater treatment, which requires the utilization of the internal carbon in the wastewater to produce biogas. An increased carbon extraction for biogas production challenges conventional nitrogen removal, in which denitrifying bacteria depend on an easily accessible source of carbon. Hence, POWERSTEP focuses on novel concepts for nitrogen removal in the mainstream line, with a minimum requirement of carbon. Within work package (WP) 2 of POWERSTEP, Mainstream nitrogen removal, three different tasks have been performed that represents three different options for nitrogen removal after advanced carbon extraction. In task 2.1 Advanced control strategies, it was demonstrated in Case study Westewitz WWTP that, with an advanced control system where polymer addition in the primary treatment was based on minimum carbon source requirement for denitrification, a high degree of carbon extraction could be achieved while still meeting the effluent demands for nitrogen, utilizing the conventional nitrification-denitrification pathway. In task 2.2 Mainstream deammonification, the concept using a specific group of autotrophic bacteria, commonly referred to as anammox bacteria, for removal of ammonia to nitrogen gas was demonstrated in full scale prototype in Case study Sjölunda WWTP. Since anammox bacteria are not dependent on carbon for nitrogen removal, the full potential of carbon recovery for biogas production can be reached. In task 2.3 Mainstream duckweed reactor, the potential of using duckweed for high production of vegetal organic biomass for biogas production and simultaneously achieve nitrogen removal, was demonstrated in Case study Westewitz WWTP. This deliverable provides a guideline, where the different options to remove nitrogen within municipal wastewater after advanced carbon extraction are presented based on the performed tasks in WP2 of POWERSTEP, and in comparison with conventional processes. Special emphasis is made on resources (energy, footprint, chemicals) and performances (removal stability, flexibility, sludge production). The outcome from POWERSTEP (tasks 2.1.-2.3) and comparisons with conventional processes showed that in order to meet the full potential of carbon recovery and turning the wastewater treatment plant truly energy positive while still meeting high nitrogen removal requirements, there is a need to implement anammox removal technology. However, the full scale demonstration showed that even if the potential is clearly there, the technology is not yet mature enough to be commonly implemented during cold (<15°C), diluted (low NH4N concentrations) and unfavourable (high) COD to N conditions in the wastewater, why further full scale demonstrations are highly recommended. Under more favourable, and especially warmer wastewater conditions, the anammox technology is today ready for the early frontrunners. Finally, the power of an advanced control strategy for conventional nitrification and denitrification should not be underestimated. With an optimised extraction of primary organic carbon, a large increase of biogas and energy recovery can be obtained without jeopardizing the nitrogen limits. This strategy is ready for implementation and should be evaluated on all wastewater treatment plants.

Abstract

Discussion on options and performances of advanced control sys-tems for biological nitrogen removal after advanced primary treatment. The process control options are described in details as well as process performance in the demo site was quantified in-cluding transition strategy from conventional scheme to process with the advanced carbon extraction.

Abstract

Producing more biogas from sludge digestion is one of the main factors to reach energy-neutral or energy-positive WWTP operation. In the project POWERSTEP a primary goal is to remove as much energy rich primary sludge as possible from the system prior to the biological treatment without having negative effects on downstream processes and effluent quality in terms of nitrogen removal. Within the project Work Package 1 addresses enhanced carbon extraction in primary treatment with different filtration technologies (drum and disc filters from Veolia Technologie AB - Hydrotech) tested in Case Study 1 (Westewitz, Germany) and 2 (Sjölunda, Sweden). To give scientific proof of the results and benchmark the performance against other competing technologies, process performance data has to be compared with other technologies used for primary treatment. In this report the results of literature research and comparison with data of case studies of full scale enhanced primary treatment units are shown and compared to each other. Specific indicators for the comparison are defined followed by identification of available alternative technologies for primary treatment at municipal wastewater treatment plants (WWTPs). These technologies are described by functionality, efficiency and operational data. Finally an overview of the results is presented in form of a fact sheet for primary treatment processes.

Abstract

This deliverable describes Guidelines for design and operation of advanced primary treatment with microscreen. Technical speci-fications including pre-treatment, mesh size, hydraulic velocity, chemicals (substances, doses, contact times), operational re-quirements (backwash, cleaning) and operational performanc-es (removal rates, backwash sludge quantity and quality) are presented with data gained from the two Case study site trials in Westewitz (Germany) and Sjölunda (Sweden)..

Dühmke, L.-R. F. (2018): Bewertung der Mikrosiebung im großtechnischen Maßstab als erweiterte Vorklärung unter biologischen und ökonomischen Aspekten.

Master Thesis. Fakultät III Prozesswissenschaften, Institut für Technischen Umweltschutz, FG Umweltverfahrenstechnik. Technische Universität Berlin

Abstract

This study was done in connection with the EU-funded project POWERSTEP. Powerstep, with various research-work packages, is positioned to help conceptualise waste water treatment facilities as energy suppliers. The goal of the study is to evaluate if micro-filtration, as part of an expanded pre-treatment stage, can provide organic matter for digestion while allowing stable treatment conditions in sludge activation.

Abstract

One aim of the EU-funded research Project POWERSTEP is to investigate the applicability of duckweed in wastewater treatment in removing nitrogen based on the principle of the APS duckweed plant system. The motivation for this investigation is the intended combination of the Hydrotech drum filter with the APS duckweed plant system at case study one of the POWERSTEP project. The goal is to demonstrate and market a new wastewater treatment concept heading towards energy positive wastewater treatment plants. The investigations were first carried out on a laboratory scale to identify suitable duckweed species, the optimal duckweed mat density, relative growth rate (RGR), doubling time and the ammonium removal under the given conditions at the case study. Subsequently, the results were used to test on a large scale on a sewage treatment plant. From the four tested duckweed species Lemna Minor, Lemna Minuta, Landoltia Punctata and Spirodela Polyrhiza, the species Lemna Minor and Landoltia Punctata adapted best to the given wastewater composition. In a mix population of Lemna Minor and Landoltia Punctata a mat density of 0.075 g· cm-2 was determined to be best in suppressing competitive submerged algae growth and enabling duckweed relative growth rates of 0.072 d-1 and doubling times of 9.93 days. Based on the APS duckweed plant system, mean daily ammonium removal of 0.56 g N· m-2d-1 and a daily ammonium degradation efficiency of 72.75% to a mean ammonium effluent of 12.26 m·l-1 was shown at a lab-scale for a retention time of 24 hours. Based on the results of this research, it can be concluded that the principle of the APS duckweed plant system under the use of Lemna Minor and Landoltia Punctata can be applied to remove ammonium from wastewater achieving high reduction rates. The experiment on the wastewater treatment plant shows that the effectiveness of the purification process is heavily dependent on climatic conditions. For example, in the summer the duckweed had a total nitrogen(TN) removal rate of 40-70%, while in winter it was only 17-40%. There were also great difficulties due to the occurrence of heavy storms. The plant switched off and was destroyed in many places which led to a dying of duckweed. There were also problems with the harvest of duckweed. Due to poor flow conditions, duckweed was not easy to clear off and could not be harvested.

Do you want to download “{filename}” {filesize}?

In order to optimally design and continuously improve our website for you, we use cookies. By continuing to use the website, you agree to the use of cookies. For more information on cookies, please see our privacy policy.