To evaluate the potential hazard of a harmful substance on its pathway from a source to a sensitive site, it is important to know if degradation or reversible sorption is the dominant process. While, in case of degradation, mass is removed from the system, in the case of reversible sorption the transport is only retarded. A mathematical analytical concept is outlined, which can be applied to evaluate data from field experiments, from technical and semitechnical facilities and from the laboratory. The concept is exemplified on a series of enclosure experiments performed with phages within a project investigating processes during bank filtration. Results show that parameters are not constant in the experiments and indicate a significant influence of redox conditions on both retardation and deactivation rates. On the other hand, an influence of the clogging layer could not be detected.
The Influence of Redox Conditions on Phage Transport - Enclosure Experiments and Modeling