The AQUISAFE research project aims at mitigation of diffuse pollution from agricultural sources to protect surface water resources. The project has several objectives including optimizing system-analytical tools for the planning and implementation of mitigation zones, demonstrating the effectiveness of mitigation zones in international case studies in the US Midwest and Brittany, France and developing recommendations for the implementation of near-natural mitigation zones, which are efficient in attenuating nutrients and selected pesticides. A series of different types of mitigation systems, including constructed wetlands and reactive trenches are being constructed in 2010 at identified agricultural sites in France and the USA. A preliminary monitoring of a drainage-fed surface flow wetland showed good nitrate retention when water infiltrated or had significant residence times, but no discernable effect during major storm events. As a result, future designs aim at higher reaction times by adapting size of end-of-drainage solutions to expected flows and by developing new mitigation systems for existing drainage ditches. Moreover, reaction rates are improved by forming favourable conditions for underground passage and by addition of organic carbon sources, such as straw or wood chips. Whereas nutrients are the focus for the field sites in France, both nutrients and atrazine are the focus in the US. Reactive trenches are being tested for pesticide retention at laboratory and technical scale at the experimental field of the German Federal Environment Agency. In the latter experiments, Bentazon and Atrazine are used as test substances, given their relevance for European and US surface waters, respectivelyseveral objectives including optimizing system-analytical tools for the planning and implementation of mitigation zones, demonstrating the effectiveness of mitigation zones in international case studies in the US Midwest and Brittany, France, and developing recommendations for the implementation of near-natural mitigation zones, which are efficient in attenuating nutrients and selected pesticides. A series of different types of mitigation systems, including constructed wetlands and reactive trenches are being constructed in 2010 at identified agricultural sites in France and the USA. A preliminary monitoring of a drainage-fed surface flow wetland showed good nitrate retention when water infiltrated or had significant residence times, but no discernable effect during major storm events. As a result, future designs aim at higher reaction times by adapting size of end-of-drainage solutions to expected flows and by developing new mitigation systems for existing drainage ditches. Moreover, reaction rates are improved by forming favourable conditions for underground passage and by addition of organic carbon sources, such as straw or wood chips. Whereas nutrients are the focus for the field sites in France, both nutrients and atrazine are the focus in the US. Reactive trenches are being tested for pesticide retention at laboratory and technical scale at the experimental field of the German Federal Environment Agency. In the latter experiments, Bentazon and Atrazine are used as test substances, given their relevance for European and US surface waters, respectively.
Near Natural Mitigation Zones for Agricultural Runoff Management to Protect Drinking Water Supplies: A French-German-US research collaboration.