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Executive summary 

 

This report contains the demonstration outcomes of 11 digital solutions under WP2. For each 
solution, it describes the demonstration site and challenges, the achievements in terms of 
performance and return on investment and the approach to assess and quantify the benefits 
via solution-specific key performance indicators (KPIs). Section 1 introduces the solutions and 
their targeted impacts. The following section 2 to 12 document the demonstration of the 
digital solutions (DSs). For each DS, the solution itself and demonstration are outlined, KPI 
definition is documented and return on experience is assessed. At this stage, all DS are 
finalised, the KPI are defined, and fully assessed. This deliverable is further part of the full 
“environment” of WP2 deliverables. The baseline for implementing and demonstrating the DS 
is detailed in D2.1 Implementation plan (M12), and technical specifications and expected 
benefits and recommendations for replication are given in D2.4 Technology report. 

Key elements on performance of each solution as well as key learnings per solution are the 
following: 

Mobile application for data collection of drinking water wells DS7.1 

Performance improvements 

The baseline scenario is that field workers document observations onsite with paper forms 
that are later copied into a database. The mobile app “DW well diary” provides a 
streamlined, more efficient flow of information. Performance improvements are: 

• 40 % reduction of time needed to document field work at drinking water wells, 
resulting in cost savings of more than 13 k€ per year. 

• 2.8 % reduction of errors compared to manually entered data, leading to additional 
cost savings of around 12k€ per year. 

Key learnings 

The DW well diary enables central storage of data that have not been stored before at BWB. 
The user-centric development resulted in the high acceptance of the potential end-users 
and made it possible that new features could be prioritized according to end-users needs. 
Standardization is a prerequisite for digitalization, and the lack of it is a barrier to 
implementation. An additional effort was needed for the internal standardizing of 
procedures and the extension of the internal database.  

Forecasting tool for strategic planning and maintenance of drinking water wells DS7.2 

Performance improvements 

The baseline scenario is the internal tool that BWB is currently using to assess its strategic 
planning and maintenance need. The developed machine-learning approaches to identify 
well ageing and decreasing well capacity in routine operation to prioritize maintenance or 
reconstruction needs in DS7.2 lead to higher forecast and prediction accuracies, such as: 
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• An increase in the coefficient of determination (r²) from 0.38 to 0.78. 

• A reduction in root mean square error (RMSE) of 18.2 %. 

Key learnings 

Within the project, the applicability of machine learning to support well managers was 
successfully demonstrated. However, further research is needed to fully implement the 
solution in the business processes of water utilities. Nevertheless, the project results and 
the data show foundations for building well management tools. 

Sensor and smart analytics for tracking illicit sewer connection hotspots DS9 

Performance improvements 

The baseline scenario is the current practice of finding illicit connections with CCTV 
inspections. The hotspot screening with smart sensors and data analytics shows the 
following performance increase: 

• The hotspot screening efficiency increased tenfold, as the search area can be 
reduced to ≈10 % of the network with the proposed methods. 

• The overall OPEX reduction is around 32 % compared to commonly used techniques. 

Key learnings 

The smart sensors are easy to handle and install. However, some weak points in the sensors 
(e.g., electrical cables) need to be more robust for permanent use inside sewer systems. 
Furthermore, several network connection and data transmission problems were leading to 
data loss. This has to be improved as well for a permanent installation. 

DTS sensor for tracking illicit sewer connections DS8 

Performance improvements 

The baseline scenario is the current practice of finding illicit connections with CCTV 
inspections. The hotspot pinpointing with distributed temperature sensing (DTS) shows the 
following improvements compared to the baseline scenario: 

• Detection of additional illicit connections is around 0.67 per km  

• This comes at an increase in OPEX of a factor of 3.5 

Key learnings 

Typically, access to the sewer system is realized via a sewer manhole that allows easy and 
safe access, e.g., via a fenced-off manhole at a parking lot or another location with no or 
only little traffic. In the Berlin Fennsee area, however, no such manhole was available as all 
storm sewer manholes were located in the middle of streets, making installing the devices 
more complicated. 

Low-cost temperature sensor for real-time combined sewer overflow and flood 
monitoring DS14 
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Performance improvements 

The baseline scenario is either no monitoring of combined sewer overflows (CSOs) as in 
Sofia or the detection with commonly used measurement devices (i.e., water level sensors) 
as in Berlin. The novel low-cost sensors showed the following performance compared to the 
baseline: 

• The low-cost sensor can detect the same number of CSO events as conventionally 
used sensors, hence, enabling the detection where such sensors are not available 

• The detection accuracy is the same as for water level sensors 

• The accuracy of detecting the duration of CSO events is slightly over-estimated 
(around 7 %) 

• The CAPEX of the low-cost sensors is significantly lower than conventionally used 
sensors. Offline devices lead to a 77-92% reduction in costs per unit, and online 
sensors to a 46-78% reduction, respectively. 

Key learnings 

The sensors are surprisingly easy to install, both for the online and offline versions, even for 
inexperienced operational teams, and sensor maintenance tasks such as replacing batteries 
and cleaning are also easy. However, the hydrodynamics of the offline sensors could be 
improved to avoid the loss-malfunctioning of those sensors due to shear and strain 
produced by wastewater. Also, the battery life of the sensors could be increased to reduce 
the frequency of manhole maintenance activity for operators. A possible application barrier 
of the smart sensors might be the higher OPEX costs due to the higher maintenance effort 
of the in-situ sensors. 

Smart sewer cleaning system with HD camera and wireless communication DS15 

Performance improvements 

The baseline scenario for cleaning consist of standard cleaning of sewer pipes plus an 
additional inspection process with CCTV inspections or an electronic mirror. The smart 
device that combines sewer cleaning and inspections in one process resulted in the 
following performance: 

• The cleaning effort increases by a factor of 2.3 

• However, the inspection efficiency of the new device is ten times higher compared 
to standard cleaning and two times higher when compared to an electronic mirror 

• The gained financial value for cleaning, quality control, and condition assessment 
reduces the CAPEX by 200k€ (no additional inspection truck needed) and halves the 
OPEX (no additional inspection team is required).  

Key learnings 

DS15 has proven to be a perfect additional tool for the cleaning team, used for several use 
cases, where the CCTV was not applicable (e.g., useful for egg-shaped profiles and pipes 
with small diameters). Although the usage of DS15 results in additional time and effort for 
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the operational team, the video quality is excellent and gives good information about the 
pipe’s structural and operational condition. 

Sewer flow forecast toolbox DS11 

Performance improvements 

The baseline scenario for the comparisons is that the current forecasting system is 
calculated regarding inflow measurements at the WWTP and the existing inflow forecast 
“STAR”. The improved machine learning (ML) sewer inflow forecast toolbox increased the 
forecasting performance in the following way: 

• Accuracy of short-term forecasts (three hours) increased by around 30% (measured 
w.r.t. RMSE) 

• Dry weather flow forecasts for more extended time horizons (12-36 hours) had an 
accuracy score of around 75-80% 

• With the new method, wrong WWTP operations could be reduced by 90%. 

Key learnings  

The ML tool shows more flexibility and a higher degree of automation in the model building 
than the currently used model. Additionally, the ML model, once it is trained, is way faster, 
allowing forecasts in the order of seconds. Furthermore, model training with the ML tool is 
easier, and longer forecasting horizons could be used if desired.  

Interoperable decision support system and real-time control algorithms for 
stormwater management DS12 

Performance improvements 

The two baseline scenarios are (1) an integrated control strategy currently used by BIOFOS 
and (2) an alternative control strategy using a HIFI model. Results for the developed digital 
solution have shown that: 

• a by-pass volume reduction of 820.000 m3 or equal to a 25% savings can be achieved 
with the new strategy 

• nitrogen can be reduced in a range of 7 % to 19 % depending on the baseline control 
strategy 

• a CAPEX reduction of 75 Mio € can be theoretically achieved with the novel control 
algorithms. 

Key learnings 

Some improvements are still needed to use the HIFI models as a decision support tool. The 
performance quality of the forecast models had to be assessed and ensured at multiple 
stages, i.e. before and after operationalization. Moreover, the evaluation of the operational 
system forecasts depends on the occurrence of wet-weather events over which they could 
be performed. Regarding the development and implementation of control scenarios, 
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BIOFOS needed to consider the technical viability of options (i.e., in the model setup) and 
practical considerations, such as if these control options could be implemented in real life. 

Web platform for integrated sewer and wastewater treatment plant control DS13 

Performance improvements 

The web platform lets shareholders download data and integrate them into their control 
strategies. Improvements assessed within workshops and through co-creation with 
different utilities were: 

• An increased usage of the digital solution utility buy-in with 80 % participation 

• That the dashboards are used by the top management 

Key learnings 

As data is communicated via different sources and protocols, the plan was to utilize 
communication standards to minimize development overhead. However, being flexible in 
handling data was determined to be a better approach, as no such standard exists. The FCF 
platform has a convincing modern, intuitive visualization interface and is a substantial 
improvement to the SAMDUS platform. The performance/ speed to display data in FCF has 
been tested and evaluated multiple times and has surpassed BIOFOS expectations. 

Active Unmanned Aerial Vehicle for the analysis of irrigation efficiency DS5.1 

Performance improvements 

A new method for the remote detection of water stress with an active Unmanned Aerial 
Vehicle (UAV) and multi-spectral imagery has been developed. The solution’s performance 
is compared with two baseline scenarios: (1) visual inspections only and (2) with visual 
inspections plus ground sensors. The inspection performance in terms of the spatial, 
temporal coverage of a field to water- and nutrient stress, overall costs, and data quality 
doubled compared to baseline scenario 1 and still increased by a factor of 1.4 compared to 
baseline scenario 2. 

Key learnings 

The practical application of UAVs, satellites and ground sensors highlighted opportunities. 
The digital solution enables the mapping of stress conditions, a spatially distributed 
phenomenon. The end-user could adapt the irrigation and check the effect by evaluating 
the KPI over a given temporal range (not necessarily the overall season). 

Match-making tool between water demand for irrigation and safe water 
availability DS5.2 

Performance improvements 

The digital solution supports the redesign of irrigation schemes by considering the potential 
of water reuse and establishing a new communication channel to connect the water 
provider and the end-user (farmers) through a user-friendly web app/webpage. Compared 
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to boarder irrigation, 68% of water, 48% of fertilizers, and 6802kg of CO2 emissions can be 
saved annually. In comparison to drip irrigation, the savings are 29% of water, 100% of 
fertilizers, and 6911 kg of CO2 per year. 

Key learnings 

The design and development of the MMT highlighted opportunities and issues. The impacts 
can be minimal in case of less sensitive growing stages, low-stress meteorological conditions 
and short interruptions. At the same time, they can be tragic in case of crucial growing 
stages, high-stress meteorological conditions and prolonged disruption. The impacts can be 
minimal in case of less sensitive growing stages, low-stress meteorological conditions and 
short interruptions, while they can be tragic in case of crucial growing stages, high-stress 
meteorological conditions and lengthy interruptions. A possible limitation of the solution is 
related to the availability and quality of water from the WWTP. A relevant lesson learned is 
the necessity to define a common way to exchange data efficiently and safely. 

 

 

This document is an update of the last performance report delivered in M42. Updates include: 

An overview table in the executive summary highlighting the key elements on performance 
and learnings from the experience for each digital solution, as well as some minor correction 
of typos and symbols as suggested by the reviewers. 
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1. Preface 

European cities face different challenges to achieve sustainable management of urban water 
systems, e.g. the over-exploitation of surface waters and the effects of climate change 
competing with a growing demand for liveable and resilient cities. Mobile devices, real-time 
sensors, machine learning, artificial intelligence, cloud solutions, and other exponential 
technologies can significantly improve the management of water infrastructures. They can 
boost the quality of services provided to citizens and foster collaboration between utilities, 
authorities and citizens. Further, they can improve operational efficiency, workforce 
utilization, reduce environmental impacts, ensure compliance, and facilitate achievement of 
sustainability goals and resiliency commitments.  

In work package 2 of the digital-water.city project (DWC), eleven digital solutions1 have been 
tested and assessed regarding their potential to improve the performance and return on 
investment of water infrastructures, the latter mainly related to cost savings in the short and 
long-term, e.g. via predictive maintenance and strategic planning tools. Figure 1 shows the 
eleven solutions and their addressed domain in the water cycle. 

 
Figure 1: The digital solutions of DWC-WP2 and their addressed domain in the water cycle. 

The present report describes the main benefits of the digital solutions – quantified through 
large-scale demonstration projects via defined performance indicators – in the form of fact 
sheets. Each chapter refers to one digital solution and was written by the representatives of 
the respective solution (technology provider, utility or research partner). The solutions are 
presented along the water cycle starting with the drinking water domain (DS7.1 and DS7.2), 
continuing with sewer networks (DS9, DS8, DS14 and DS15), closely linked with wastewater 

                                                      

1 The full list of digital solutions can be consulted at https://www.digital-water.city/digital-solutions 



 

 

18 

treatment (DS11, DS12 and DS13), and finishing with water reuse (DS5.1 and DS5.2). The main 
added values and benefits of the solutions are summarised in Table 1.  

Table 1: Main added values of the eleven digital solutions of DWC-WP2, grouped to i) reduction of environmental impacts, ii) 
operational improvements, iii) cost savings and iv) improved collaboration between stakeholders. 

Digital Solution 

Reduction of 
environmental 

impacts 
Operational 

improvements Cost savings 
Improved 

collaboration  

DS7.1: Mobile application for data collection of 
drinking water wells 

 ✓ ✓ ✓ 

DS7.2: Forecasting tool for strategic planning 
and maintenance of drinking water wells 

 ✓ ✓  

DS9: Sensors and smart analytics for tracking 
illicit sewer connection hotspots 

✓  ✓  

DS8: DTS sensor for tracking illicit sewer 
connections 

✓  ✓  

DS14: Low-cost temperature sensors for real-
time combined sewer overflow monitoring 

✓  ✓  

DS15: Smart sewer cleaning system with HD 
camera and wireless communication (DS15) 

 ✓ ✓  

DS11: Sewer flow forecast tool box 
 

✓ ✓  ✓ 

DS12: Interoperable DSS and real-time control 
algorithms for stormwater management 

✓  ✓ ✓ 

DS13: Web-platform for integrated sewer and 
wastewater treatment plant control 

   ✓ 

DS5.1: Active Unmanned Aerial Vehicle for the 
analysis of irrigation efficiency 

✓ ✓   

DS5.2: Match-making tool between water 
demand for irrigation & safe water availability 

✓ ✓  ✓ 

 

All of the digital solutions have multiple positive effects, as outlined in detail in the following 
chapters. In the domain of drinking water wells, main benefits of the demonstrated solutions 
(DS7.1 and DS7.2) are operational improvements and cost savings. In the domain of sewer 
networks, the solutions (DS9, DS8, DS14 and DS15) mainly contribute to a reduction of 
environmental impacts and cost savings. Solutions that address both the sewer network and 
the wastewater treatment plant (DS11, DS12 and DS13) also improve the collaboration 
between stakeholders, besides operational, environmental and economic benefits. The 
solutions related to water reuse (DS5.1 and DS5.2) have environmental and operational 
benefits and also facilitate collaboration between stakeholders. 

The document aims to help cities and water utilities in finding effective solutions for their 
operational, environmental or public health challenges. The document also targets the 
industry and private sectors by summarising the practical experiences obtained in the 
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demonstration projects. The report is a draft version and will be updated and published as a 
final version in November 2022. A technical description of each digital solution can be found 
in D2.4 (technology report).  
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2. DS7.1: Mobile application for data collection of drinking water wells 

2.1. Digital solution 

Drinking water wells are the main infrastructural assets for utilities to produce drinking water. 
In order to fight well-ageing and maintain the well’s groundwater production capacity, iron-
ochre formations need to be periodically removed in the process of well regeneration. In 
addition, periodic maintenance of submersible pumps and frequency converters is necessary 
to ensure a reliable drinking water production. 

Well data consisting of static information such as design and construction as well as 
operational data such as current discharge rates, water levels, previous maintenance, and 
water quality data are typically stored in well management database(s). However, in the field, 
paper format is still widely used to record monitoring and maintenance data and these work 
reports are later on transferred manually to the database(s). Further, technical specifications 
of the well or previously recorded information on well maintenance or are not fully accessible 
while being on the field. The developed digital solution "DW Well Diary" (DS7.1) consists of (i) 
a user-friendly web application (frontend) accessible from mobile devices (see Figure 2) and 
(ii) a backend solution that facilitates the exchange of data between the well database and 
the mobile application. The solution aims at making well data easily available to staff in the 
field and facilitate online-documentation of maintenance actions. It will be fully integrated 
with the existing operation and maintenance work processes. The provision of digital well 
information and work reports on site by a mobile device application will improve guidance 
and on-demand information for field workers and facilitate interactive flow of information 
enhancing performance and resource efficiency in monitoring and maintenance. 

2.2. Demo description 

Berliner Wasserbetriebe (BWB) is operating approximately 650 groundwater abstraction wells 
and some thousand observation wells. Together with another hundreds of observation wells 
owned by Berlin’s water authority they form the subsurface assets for drinking water 
production in Berlin.  

In nine water works, BWB is producing up to 1 Mio. cubic meters of drinking water per day. 
Well operation is automated and controlled from the water works. In order to secure a reliable 
water supply 24 hours a day, the wells are regularly inspected and maintained. This includes 
laboratory analysis of well water quality, pumping tests to test well capacity, CCTV inspection 
for visual diagnosis, mechanical cleaning as well as chemical regeneration procedures to 
remove for example iron ochre deposits. More and more, wells are equipped with a set of 
sensors to monitor flow, water level and heads. Sensor equipment varies depending on site 
and age of the well installation. The three largest of BWB’s nine waterworks control operation 
of the six smaller waterworks and form internal teams, which are responsible for operation 
and maintenance of wells and infrastructure in the three main waterwork-groups. 
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(a) 

 

(b) 

 

(c)

 

(d)

 
Figure 2: The “DW Well Diary” dashboard as part of the progressive web app (a) with Waterworks hierarchical view with filter 
options (b), Well detail view (c) and Change of property for well equipment and well parameters (d). 

The development of the digital solution DS 7.1 “DW Well diary” followed the principles of agile 
software development, meaning that the features of the DS were incrementally developed 
and tested in prototypes with a team of end-users, selected from operating staff of the three 
main waterwork-groups. Based on the prior developed concept of the Well Diary and a first 
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definition of business processes and data to be included in the Well Diary, a first prototype 
was developed, visualizing concept and basic functions. In January and May 2021, two 
workshops were held with the end users where the features of the prototypes were discussed 
in detail and compared to user expectation and needs. User requirements were adapted and 
additional features identified. Also, these workshops revealed differences in internal business 
processes, such as exact work-flows and naming conventions between the test users from the 
three main waterwork-groups. This shows that standardization of business processes is often 
a prerequisite for digitalization. 

The following table shows an overview of data which can be assessed using the Well Diary: 

• technical specifications of the well: date of borehole drilling, borehole diameter, depth 
of the well screen, material of the well screen, aquifer used, variable frequency drive 
type; 

• technical specification of well equipment (variable frequency drive, MID, filter; 

• maintenance actions: date of equipment change, date of MID calibration; 

• operational data: water production at the time of the last well capacity test; 

• coordinates of the well, link to GIS. 

2.3. Assessment of the digital solution 

Within the DWC project, a working prototype of the “DW Well Diary” has been developed. It 
is currently running in a test environment within BWB’s IT infrastructure. At the premises of 
BWB, there are two environments for integration testing and productive operation, namely 
stage and prod. On stage, all final integration testing has been done on current data of the 
Db2 database within all working parameters of the infrastructure and environment. A working 
prototype of the “DW Well Diary” has been deployed on stages 1 and 2 of the Vragments 
dedicated DWC system and also on stage 1 of the BWB environment. Transfer to productive 
operation is planned after integrating the mobile app into the existing LDAP user 
authentication and after adding of additional features which were defined during user 
workshops in DWC but could not be finished within the project. Also, software maintenance 
needs to be provided and contracted for the prod environment. As full-scale roll-out of the 
developed digital solution is therefore planned, the assessment of the “DW Well Diary” 
assumes implementation in the prod environment and two key performance indicators (KPI) 
were defined as summarised in Table 2. 

Table 2: Overview table of KPI assessment  

KPI Short description Quantification 

Reduction of 
time needed to 
document field 
work at drinking 
water wells 

Any maintenance of drinking water wells 
includes documentation in a central well 
database. The “DW Well Diary” allows 
direct input into the well database and 
eliminates the need for paper 
documentation and later transfer to the 
database. 

1−
𝑡𝑖𝑚𝑒𝐷𝑜𝑐𝑢,𝐷𝑊 𝑊𝑒𝑙𝑙 𝐷𝑖𝑎𝑟𝑦

𝑡𝑖𝑚𝑒𝐷𝑜𝑐𝑢,𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 = 40 % 
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KPI Short description Quantification 

Reduction of 
errors of 
manually 
entered data in 
the database 

The error-prone manual transfer of data 
to from paper to a database is replaced by 
direct data entry in the field. Based on the 
estimated number of data entries per year 
and an average error rate during manual 
data transfer, the number of data errors 
prevented by implementation of the DS is 
calculated. 

ER × 𝑛𝑒𝑛𝑡𝑟𝑖𝑒𝑠 = 2.8% × 8190 ≈ 229 
 

2.3.1. KPI 1: Reduction of time to document field work at drinking water wells 

In order to estimate the time saved during documentation of drinking water wells, the number 
of maintenance documentation processes was estimated: 

• Change/maintenance of submersible pump: 1x /5 years, 

• Maintenance of frequency converter unit: 2x / 5 years, 

• Well regeneration: 1x / 5 years, 

• Flow meter maintenance: 1x / year, 

• General maintenance, function test, inventory: 1x / year. 

Thus, for each drinking water well, a total of approximately 2.8 maintenance processes per 
year were estimated, which require documentation. For the time needed to document 
maintenance actions, 0.3 hrs per process were estimated for documentation in the field and 
0.2 hrs per process to later transfer these data into the database (including plausibility check). 

Table 3: Time needed for documentation of maintenance processes in hours per process for the paper-based documentation 
and subsequent transfer to the digital database (current practice) and the electronic documentation directly in the field 
(DS7.1). 

Process Paper-
based  

Electronic  

Documentation in the field 0.3 0.3 

Plausibility check and transfer into database 0.2 None 

Total time 0.5 0.3 

 

Electronic documentation using the “DW well diary” eliminates the need for data transfer and 
allows for implementation of automatic plausibility checks during data entry. Accordingly, 
approximately 40% of the time needed for documentation can be saved by implementing the 
“DW well diary”. This number is in line with research comparing paper-based and electronic 
data collection processes in clinical trials which report 49% to 62% of savings that the 
electronic process brings2.  

                                                      

2 Pavlović, Ivan; Kern, Tomaz; Miklavcic, Damijan (2009): Comparison of paper-based and electronic data collection process 
in clinical trials. Costs simulation study. In: Contemporary clinical trials 30 (4), S. 300–316. DOI: 10.1016/j.cct.2009.03.008. 
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Considering the total number of 650 drinking water wells currently operated in Berlin, the 
total reduction of time needed for maintenance documentation can be estimated to be 
approximately 364 hours/year, corresponding to personnel costs of approximately 13.000 €. 
An additional, not quantified benefit of the “DW well diary” is the immediate availability of 
data in the database, as data do not need to be transferred manually, which currently takes 
between several days and a few weeks. 

2.3.2. KPI 2: Reduction of errors of manually entered data in the database 

Data errors are frequently found in electronic data repositories in general but also in the 
internal well database to which the “DW well diary” is linked. Although such data errors are 
discovered from time to time, the data quality of the internal well database is generally good 
and could not be checked in detail during the project. It is assumed that data errors mainly 
happen during manual transfer of data from paper to the electronic database. Following 
Hong3 who investigated error rates in a clinical data repository, the error rate during manual 
data transfer into the database is assumed to be 2.8 %. Based on the number of data entries 
per work process, the total number of work processes per year (see 2.3.1) and the total 
number of wells (650), the total numbers of data entries per year is estimated to be 8.190. 
Implementing the “DW well diary” will thus potentially prevent approximately 230 false data 
entries into the database. Assuming an additional effort to 1.5 hrs of work to find, correct and 
double-check any false data entry, this corresponds to approximately 344 hrs/year, 
corresponding to personnel costs of approximately 12.000 Euro. 

Beyond these KPIs, the introduction of the “DW well diary” additionally enables a central 
storage of data which currently have not been stored in electronic form or decentralized. 
During the development process, a number of work processes was identified which were not 
yet digitized, but relied on pen-and-paper-processes. Some of these processes were 
standardized and additional data structures needed to be added to the internal database. This 
is necessary to efficiently control technical processes and guarantee safe drinking water 
production as shrinking production reserves are less able to compensate for downtimes. The 
“DW well diary” will therefore contribute to making Berlin’s water production more resilient. 

2.4. Return on experience 

The realized incremental development including early prototyping and continuous delivery 
enabled the user-centric development of the “DW Well Diary”. Valuable user feedback was 
collected in digital workshops and enables further development of the prototype. Users’ 
needs and perspectives were assessed and fed back into product development. The benefits 
were a high acceptance of the potential end-users as well as high expectations of the end-
users regarding features provided to help them in their daily work. Additional features were 
identified showing the potential of the digital solutions but unfortunately exceeding the 

                                                      

3 Hong, Matthew K. H.; Yao, Henry H. I.; Pedersen, John S.; Peters, Justin S.; Costello, Anthony J.; Murphy, Declan G. et al. 
(2013): Error rates in a clinical data repository. Lessons from the transition to electronic data transfer--a descriptive study. In: 
BMJ open 3 (5). DOI: 10.1136/bmjopen-2012-002406. 
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available capacity of the project. This process also made it possible that the features could be 
prioritized according to end-users needs.  

During the prototype workshops, the team of end-users was asked about their expectations 
on the Well Diary to assess the potential benefits of the solution. A total of five staff members 
was questioned and the results show that expectations are generally high. 

Figure 3 shows the results of collected user feedback on the benefits of the digital solution. 
While the users agreed that the final product “Well Diary” generally saves time (Figure 3a), 
the estimated share of work where the "Well Diary" could be used in the future is expected 
to be in the range between 10 % to > 40 % of the working hrs. at drinking water wells (Figure 
3b). 

 
 

Figure 3: Feedback from prototype workshop participants (n=5) on expected benefits of the Well Diary. 

Employee satisfaction was also assessed using data from test user questionnaires (Figure 5). 
The “Well Diary” is expected to increase the job appeal as well as positively influence the 
profession (Figure 5 a and b). Average feedback was 4.4, corresponding to an estimated 
positive to very positive change in job appeal. 
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(a) 

 

(b) 

 

 

Figure 4: Feedback from prototype workshop participants (n=5) on expected benefits of the Well Diary. 

During the development of the “DW Well Diary” it was also found that standardization is a 
prerequisite for digitalization and lack of it is a barrier to implementation. Additional, 
unplanned effort was needed for internal standardizing of procedures and the extension of 
the internal database. 
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3. DS7.2: Forecasting tool for strategic planning and maintenance of drinking water 
wells 

3.1. Digital solution 

The main reason for inefficient well performance is commonly referred to as well ageing. 
Deposit formation due to multiply correlated biological, chemical and/ or physical clogging 
processes in and around the well (Figure 5) cause a decrease in the specific capacity of a well, 
which is the yield for a given drawdown. This results in higher energy demand for lifting the 
water and thus in higher costs of abstraction. Regular or on-demand monitoring provides 
information on the performance and condition of wells and aquifers, and delivers data for 
advanced statistical analyses to enhance understanding of the processes and provide 
diagnosis and early-warning to schedule well maintenance in a more proactive manner. DWC 
therefore aimed at applying machine learning to a set of selected well data in order to better 
understand the key parameters for well ageing and to project the loss of well capacity for a 
given time ahead.  

 
Figure 5: left: clogged well, ochre deposits inside the screen; right: clogged pump, ochre deposits at the pump intake, both 
©BWB 

DS7.2 combines automated data processing of routine monitoring data with machine-learning 
(ML) approaches to identify well ageing and decreasing well capacity in routine operation and 
prioritize maintenance or reconstruction needs. The solution has been developed in the 
statistical programming language R and consists of the core algorithms to (i) pre-process a 
given set of well data turning them into a data structure providing the explanatory variables 
to the ML model, (ii) feature selection and assessment of the importance of the selected 
variables, and (iii) model training and prediction of future loss of well capacity based on 
selected well characteristics. With this approach, DS7.2 moves from time-based to condition-
based maintenance, which makes maintenance more efficient, reduces energy consumption 
for pumping and avoids downtime of wells. 

 

 



 

 

28 

 

3.2. Demo description 

The Berliner Wasserbetriebe (BWB) are operating more than 650 vertical filter wells supplying 
the drinking water for the city’s nearly 3.7 Mio. inhabitants from groundwater resources 
within the city limits. In order to keep performance and water quality as high as possible, these 
wells require regular monitoring, maintenance and well management.  

DS7.2 was developed and demonstrated based on csv-files exported from a db2-database, in 
the following referred to as “well database”. This “well database” consists of a set of tables 
describing geological conditions, constructive features of the wells, past maintenance events 
and geochemical analyses of water and ochre samples from the wells. The data set used for 
DWC contained 6.308 data points of 994 wells and covered a period from the 1950s to 2021, 
randomly separated into training and test data (80% / 20%).  

Current prognosis of well ageing focuses on evaluating the demand for reconstruction of wells 
and is done by the controlling department of BWB applying an excel-based tool (developed 
in-house). With this approach, the specific capacity of a well, is projected based on the average 
development over the lifetime of a well. In parallel, the technical division and the well 
managers in the waterworks evaluate capacity development, constructive condition, 
operational boundaries and other factors to assess the maintenance demand of the wells. On 
average, pumping tests are conducted every two years and maintenance is done every five 
years. These pumping tests in combination with the well specifics described above provide 
the data to train the ML model of DS7.2 and to assess its performance. 

The development and demonstration of DS7.2 included data pre-processing and statistical 
analysis to reveal the relevant predictor variables for well ageing and remove strong 
interdependencies in model input. Correlated numeric variables were identified using the 
Spearman correlation4 and categorical variables using the Chi-Square and Cramér’s V 
method5,6. For the core ML model, recursive feature elimination (RFE) and Random forest 
were applied with the full set of input variables to identify a set of 25 relevant variables. The 
top four predictor variables were (i) well age, (ii) time since last rehabilitation, (iii) number of 
previous well rehabilitation events and (iv) coefficient of variance in daily abstraction volume.  

Further, five statistical and ML-based methods have been tested and compared regarding 
their capability to predict the specific capacity of a well (i) multivariate linear regression, (ii) 
logistic regression, (iii) decision tree, (iv) random forest and (v) gradient boosting. The gradient 
boosting model performed best, with 94% of all data points with a remaining specific capacity 

                                                      

4 Daniel, Wayne W. (1990): Spearman rank correlation coefficient. Applied Nonparametric Statistics (2nd ed.). Boston: PWS-
Kent. pp. 358–365. ISBN 978-0-534-91976-4. 
5 Pearson, K. (1900): On the criterion that a given system of derivations from the probable in the case of a correlated system 
of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and 
Dublin Philosophical Magazine and Journal of Science 50(5), 157–175. 
6 Cramér, H. (1946): Mathematical Methods of Statistics. Princeton: Princeton University Press, page 282 (Chapter 21. The 
two-dimensional case). ISBN 0-691-08004-6 
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of below 80% predicted correctly and only 12% false warnings (Figure 6). The root mean 
square error (RMSE) for the prediction of the exact value for specific capacity (0 to 100%) is 
14.8%. The model will now be discussed with the well managers and staff of the technical and 
controlling division of BWB and tested against currently used tools. Refinement will include 
the discussion of improvement of data input and results visualization and connection to the 
BWB-IT and well database systems.  

 
Figure 6: Input data and ML model performance for the prediction of well capacity 

3.3. Assessment of the digital solution 

The benefits of the solution were assessed via the comparison of the accuracy of prognosis of 
DS7.2 against the excel tool currently used by BWB (CO-tool). The coefficient of determination 
(r²) and RMSE were calculated, of which the first describes to which percentage the variance 
in the observations can be explained by the model, and the second describes the standard 
deviation of the prediction error, i.e., the difference between observed and predicted data. 
The results are summarised in Table 4. Details on considered input data as well as calculations 
are given below. 

Table 4: Overview table of KPI assessment  

KPI Short description Quantification 

Increase in coefficient of 
determination (r²) 

r² = Σ(βi · ri) 
βi – standardized regression coefficient for i variables 
ri – correlation coefficient for i variables 

r² current practice: 0.38 
r² DS7.2: 0.78 
∆r²: 0.40 

Reduction in root mean 
square error (RMSE) for 
predicting the specific 
capacity 

RMSE = √((Pi – Oi)²/n) 
P – predicted value of the ith observation 
O – Observed value of the ith observation 
n – sample size  

RMSE current practice: 33.0 % 
RMSE DS7.2: 14.8% 

∆RMSE: -18.2% 
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For both tools, predicted numeric values for the specific capacity were plotted against 
observed values, the linear trendline was added and r² and RMSE were determined using the 
statistical programming language “R” 7.  

DS7.2 predicted values are the results of the gradient boosting model for the test data set 
compared with observations (Figure 6). CO-tool predicted values were taken from a model 
run of 05th February 2017 for the years 2018-2022 kindly made available by BWB. Observed 
values were latest pumping test data before rehabilitation events conducted between 31st 
January 2017 and 31st March 2021 exported from the db2-database. 523 wells contained 
predicted and observed values. For the assessment of model accuracy of the CO-tool, the 
prediction for the year nearest to the pumping test date was considered. Data pre-processing 
was done in Excel. 

As Table 4 shows, DS7.2 performed better for both KPIs. 78% of the variance in the 
observations could be explained and RMSE was at 14.8%, while for the CO-tool, only 38% of 
the variance was explained and RMSE was more than twice as high. Concerning the set of 
explanatory variables, DS7.2 uses specific well characteristics identified in correlation plots, 
while the CO-tool relies on a theoretical well ageing curve, which is however representing the 
average of all BWB wells with their specific characteristics. From our point of view, a 
comparison is thus admissible.  

3.4. Return on experience 

As in previous research on statistical evaluation of well ageing processes, data compilation 
and remaining data gaps and/or pre-aggregated data are crucial steps and remain as a barrier. 
Although the data set used to demonstrate DS7.2 was exhaustive, time periods covered by 
the data were quite different for the single parameters and/or measurement frequencies 
were too irregular to allow for useful aggregation. For example, operating hours and 
abstraction volumes between single maintenance events should have been included as key 
variables, but were not extractable from the given data.  

Secondly, so far, no direct connection to the data source was established. Two reasons were 
identified: (i) data export from inside BWB IT to outside interfaces was assessed to be critical 
by BWB. In DWC, DS7.1. and DS7.2 were developed independently by two partners Vragments 
and KWB. Due to this separation, joint “docking” to the data source has been explored only 
after initial development of both solutions, and (ii) statistical programming language R is 
widely used at KWB, but not at BWB. Thus, the R code developed provides the core 
calculations for data processing and ML modelling and includes key tables for indexing and 
aggregating the input variables, but these need to be provided from the source database and 
results need to be “handed over” to reporting and visualization tools.  

DS7.2 also endeavoured to improve the assessment of the remaining specific capacity by 
combining measurements of dynamic water level from regular performance monitoring with 

                                                      

7 R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 
Austria. 
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continuously measured flow rates and static water level measurements derived from 
monitoring wells. No correlation could however be established between water level 
measurements in monitoring wells and abstraction wells allowing for an automated 
assignment of reference monitoring wells to the abstraction wells under assessment. Linear 
interpolation was achieved for well data and compared to the monitoring well data. 
Calculation of remaining specific capacities using static water levels from selected monitoring 
wells yielded high uncertainties because of impacts from well operation within the galleries 
and managed aquifer recharge nearby. Training the model with highly uncertain data would 
potentially decrease overall model performance. Additional static water levels from 
observation wells were thus not incorporated.  

Overall, DS7.2 successfully demonstrates the applicability of data-driven machine learning in 
order to make optimal use of available well data and support well managers in predicting 
ageing rates and prioritizing maintenance efforts.  

 
Figure 7: Increase in specific well capacity after regeneration (mean increase after rehabilitation: 16.1 – 18.8 %, independent 
of number of regenerations) 

Due to time constraints, it wasn`t possible to perform the initially planned refinement of the 
solution within the DWC project, i.e., to also include further analyses such as clustering the 
ageing curves to narrow down preferred site conditions and factors that accelerate well ageing 
and transfer of specific capacity prediction into a well condition index. In addition, Qs 
predictions were only performed for a “do nothing” (i.e., no well renewal / well regeneration) 
scenario and to be taking “smart” asset management strategies for each well into account, 
e.g. : 

  

– Should a well be regenerated or build completely new? Depending on the expected Qs 
increase by well rehabilitation (mean increase after rehabilitation for Berlin: 16.1 – 
18.8 %, independent of number of regenerations, see Figure 7) and decrease of well 
drawdown lowering pumping energy cost.  
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– Optimize well rehabilitation schedule (i.e., predict days after which well losses xx % of 
relative Qs) in order to maintain the raw water production capacity of the Berlin 
waterworks 

 

Development of such a strategy is required in order to evaluate the potential cost savings by 
ML-based “smart” asset management and compare it to the EXCEL based investment planning 
tool for production wells currently used at BWB. Consequently, these topics need to be 
addressed after the DWC project for making the benefits of using a well specific ML-learning 
based approach for well asset management more visible and quantifiable for BWB. 
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4. DS9: Sensors and smart analytics for tracking illicit sewer connection hotspots 

4.1. Digital solution 

Illicit connections or sanitary sewage to the storm sewer system, usually due to unintentional 
errors during sewer construction or rehabilitation, are a significant source of pollution for 
surface waters and can threaten human health in case of bathing waters. Finding these illicit 
connections is like looking for a needle in a haystack as illicit connections usually occur at 
selected points within a large sewer network and usually happen intermittently. The DWC-
solution DS9 aims to localize hotspots with a strong indication for illicit connections by 
combining smart sensors and data analytics. In DWC, these hotspot regions with a sewer 
length of ~ 1-3 km are then further investigated with DS8 (“DTS sensor for tracking illicit sewer 
connections”) which locates the specific illicit connection based on longitudinal thermal 
profiles taken at high temporal resolution.  

DS9 makes use of two types of sensors, electrical conductivity (EC) sensors and 
multiparameter (MP) sensors combined with an IoT unit (KANDO’s smart unit). The sensors 
measure the electric conductivity of the flow in the storm sewer network. Based on the 
continuously measured EC signal and prior knowledge on typical EC values of stormwater (~ 
200 µS/cm) and sanitary sewage (> 1000 µS/cm), it is possible to differentiate between both 
flows and hence identify illicit connections. The sensors are initially installed at the 
stormwater outlet at the river or lake and then subsequently moved to manholes in upstream 
sewer sections to systematically narrow down hotspot areas with strong indications for illicit 
connections.  

The EC sensor system consists of an electric conductivity sensor and an offline data logger. 
The electrical conductivity is recorded every minute. The data is temporarily stored in the data 
logger and read out in intervals of 2 to 3 weeks via Bluetooth with a laptop. The data sets are 
saved as CSV files and can be further processed as desired. The batteries have to be changed 
every two to three weeks.  

The MP sensor consists of sensor probes and a data logger with antenna for data transmission 
via the cellular network. The sensors measure four water quality parameters comprising pH, 
electrical conductivity (EC), oxidation reduction potential (ORP), and temperature. Data is 
recorded in the loggers and transmitted to the cloud for storage, analysis and web-based 
display to users and Kando staff. 

In case of the MP sensors, data is acquired every 5 minutes and sent to the cloud three times 
a day. The batteries have to be changed annually. 
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Figure 8: KANDO's smart unit and sensor (left), the EC sensor and logger (right) as well a sensor installed at a sewer manhole 
(right). 

The devices are attached to a string in the manhole. Additionally, a sandbag is installed, which 
dams up the water and enables the measurement in the water. The installation of both 
systems can be carried out without going downstairs. 

4.2. Demo description 

The solution is demonstrated in the catchment of 
lake Fennsee in the central-western part of Berlin, 
Germany (see DWC-D2.1), with severe water 
quality and amenity deficits, suspected to be partly 
caused by illicit connections. The stormwater 
catchment has a total area of 220 ha, a sewer 
length of 39 km, 900 individual pipes, around 800 
manholes and approximately 1500 house 
connections. The settlement structure with 27,000 
inhabitants represents a variety in population 
density and land use. There are three stormwater 
outlets to the lake and the catchment can basically 
be divided into three sub-catchments (green, blue 
and red in Figure 9). 

The monitoring campaign started in January 2021. 
Four MP-sensors and five EC-sensors are used. 
Starting at the storm water outlets the 
investigation was carried out backwards through 
the upstream sewer network at key points in the 
system. In case of suspicious results, the sensors 
were iteratively relocated upstream. During two 
years of investigation, 54 measuring sites have 
been monitored throughout 20 measuring phases.  

For EC-sensor and MP-sensor system two different approaches to evaluate the data have been 
designed. Regarding the EC values an evaluation scheme to classify the sensor locations 
according the likelihood of upstream illicit connections has been developed. For each location, 

Figure 9: Storm water catchment area of the urban lake 
Fennsee. 
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the data of four weeks during dry weather are considered. Wet weather is defined as the time 
interval from one hour before to three hours after a rain event. Rain events were evaluated 
from a rain gauge near by the demo area. Exceedances of the limit values 600 µS/cm and 4000 
µS/cm are considered and classified into three categories based on a traffic light system, as 
shown in Table 5. Based on the outlined scheme, a Python script for an automatic evaluation 
has been developed. Measurement data, which fits with rain events will be eliminated and 
the script counts the number of relevant peaks above the limit values. Following on this, the 
program gives an advice of the classification of the measurement site in likely, possible or 
unlikely. 

Table 5: Evaluation scheme 

colour number of peaks > 600 µS/cm / 4 weeks meaning 

 > 4 (or peak > 4000 µS/cm) Illicit sewer connection is likely 

 2 – 4 Illicit sewer connection is possible 

 0 – 1 Illicit sewer connection is unlikely 
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Figure 10: Examples for evaluation: IC likely (top), possible (middle) and unlikely (bottom). 

An example for every category is given in Figure 10. The rain events are plotted with blue bars 
from top. Respectively the excluded rain durations are shown as grey areas. The EC 
measurement is plotted as a graph over 4 weeks and the critical evaluation value of 600 µS/cm 
is marked as horizontal red line. All EC peaks above the red line during dry weather periods were 
counted and the measuring site classified according the traffic light system. To date, the hot-spot 
analysis is solely based on the results from the EC sensors.  

For the MP sensor, data is transformed into actionable insights by Kando’s proprietary machine 
learning algorithms, profiling event characteristics via big data analytics and tracing events back to 
source. The data-gathering unit is also equipped with a remote sampling unit, real-time quality 
conditions determines the precise moment when grab samples should be taken in order to generate 
a representative profile of real-world wastewater contamination, and verify sensor data. 

To supplement the analysis performed by BWB team, it is recommended to analyze for diurnal trend 
and peak hours for the sites defined as having high likelihood of illicit sewer connections in order to 
better pinpoint the location of the connection. For instance, in site FA1 where Kando sensor was 

installed during the first quarter of 2022, it can be seen in Figure 11 that by using seasonal 
decomposition of the data (interval = day) much of the EC fluctuation is explained by seasonality 
(diurnal changes). The high residual can be explained by an outlier from February 24, which could not 
be removed since the function requires continuity. This means there’s a repeating pattern of EC 
increase throughout the entire period, and a further analysis can show on which hours this increase 
takes place.  
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Figure 11: Example for evaluation: Seasonal decomposition of the EC data in site FA1r.  

Figure 12 shows a deeper dive into the pattern of discharge. Looking at the diurnal distribution of 
peak events (where EC> 350 us/cm) it is clear that for site FA1, most events take place during the 
morning hours, especially during 7 AM (more than 15% of all peak events). This result can either be 
sourced to an industrial automated process or residential activity. In general, the results of peak events 
from this site align with other studies and the common knowledge that mornings are the hours of high 
residential water usage in the morning, followed by a relaxation and an additional evening peak, 
whereas during the nights there are very few peak events.  

This peak events analysis could be performed to distinguish between residential and commercial 
sources of discharges. Site M25, for instance, displays a different pattern of peak events that could be 
explained by the fact that this site sits at the heart of a small commercial area which is likely more 
active throughout the entire day.  

(a) (b) 
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Figure 12: Example for evaluation: diurnal distribution of peak events (EC>350 us/cm) in two sites, FA1 (a) and M25 (b) 

In addition to data analysis, the US EPA emphasizes the importance of sampling when performing illicit 
discharge investigation in order to validate the source of discharges. The EPA recommends on several 
analytical parameters which can provide better estimation of the source, including Ammonia, Chlorine, 
Potassium, Phenols, Hardness, etc. Kando’s solution enables automatic sampling in case of a jump or 
trend change in one or all parameters measured (EC, pH, ORP, Temperature). By integrating a sampler 
to the real time sensors, the investigation can be more accurate and time-saving.  

4.3. Assessment of the digital solution 

General goal of the DS9 is to narrow down parts of the investigated sewer system with high 
potential for the presence of illicit connections as hot spots. DS9 will be compared to visual 
inspections as conventional method in current practice. In the years from 2012 to 2013 more 
than 1000 visual inspections in nearly 800 sewers have been made in the demonstration area, 
but no illicit connection could be identified.  

The benefits of the solution could be assessed via two defined key performance indicators 
(KPI) in Table 6. Details on considered input data as well as calculations are given in the 
subsections below. 

 

 

 

 

Table 6: Overview table of KPI assessment 

KPI Short description Quantification 

Hotspot 
screening 
efficiency  

Increase of efficiency to narrow down 
parts of the sewer system with high 
potential for illicit connections (IC).  

𝐾𝑃𝐼 1 =  
ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒𝑉𝐼

ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒𝐷𝑆

= 10.5 

 

https://www.epa.gov/sites/default/files/2015-11/documents/idde_manualwithappendices_0.pdf


 

 

39 

KPI Short description Quantification 

Quotient of identified relevant sewers 
length by conventional visual 
inspections (VI) and DS 9. 

OPEX 
ratio for 
hotspot 
screening 

Costs for hotspot screening by DS9 
(personal costs and equipment 
maintenance costs) compared to 
conventional visual inspections (VI) 
within two years of investigation at 
Fennsee area. 

𝐾𝑃𝐼 2 =  
𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡𝑠𝐷𝑆 2𝑦𝑒𝑎𝑟𝑠⁄ + 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠𝐷𝑆

𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡𝑠𝑉𝐼 2𝑦𝑒𝑎𝑟𝑠⁄
= 0.68 

 

4.3.1. KPI 1: hotspot screening efficiency 

The evaluation of every measuring site is shown in a geographic context in Figure 13 as colored stars. 
The color coding is similar to the scheme explained in Table 5. Upstream sewers with potential for illicit 
connections are narrowed down and marked as red lines similar to the color coding of the traffic light 
system. Sewers, which are unlikely for illicit connections are marked in green and sewers without 
detailed information are marked in yellow. Through the investigation with DS 9 twelve hot spots with 
a strong potential of presence of illicit connections could be identified. In the area of these hot spots, 
it is possible now to search for illicit connections in detail, either with DS8 (“DTS sensor for tracking 
illicit sewer connections”), conventional methods (e.g., CCTV inspections) or furthermore with a new 
deployment of DS9.  

All identified hotspots together have a sewer length of 3.7 km. From an original total sewer length of 
39 km in the catchment area of Fennsee, DS9 achieved to narrow down the location of interest to an 
area of 9.5% or by a factor of 0.095. With conventional visual inspections carried out over the last years 
instead it was not possible to narrow down parts of the sewers system and there are still 39 km of the 
sewer system left with a possible presence of illicit connections. 

The increase of the efficiency to narrow down hotspots is calculated by the quotient of the identified 
relevant sewer size by conventional visual inspection (VI) and by the digital solution (DS9). DS9 is more 
effective than conventional visual inspection by factor 10.5.  

• Total sewer length: 39 km 

• Identified relevant sewer length by VI: 39 km 

• Identified relevant sewer length by DS9: 3.7 km 

 

 𝐾𝑃𝐼 1 =  
ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒𝑉𝐼

ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒𝐷𝑆
=  

𝐼𝐶 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑤𝑒𝑟𝑠 𝑉𝐼

𝐼𝐶 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑤𝑒𝑟𝑠 𝐷𝑆
=

39 𝑘𝑚

3.7 𝑘𝑚
= 10.5 
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Figure 13: Evaluation of the investigated measuring sites and the interpretation for hot spots. 

4.3.2. KPI 2: cost reduction for hotspot screening 

A comparison of DS 9 to conventional VI was set up in order to reflect the cost of the digital 
solution along with the benefits. On a two-year basis of investigation, staff costs as well as the 
technical costs for the digital solution and conventional visual inspections are compared. For 
the staff costs, a benchmark system is used, where time needed for the investigation is 
counted and multiplied with specific personal costs per time.  

For the conventional visual inspections, the costs contain basically the time outside in the field 
to inspect the manholes. In the years 2012 and 2013 the area of the Fennsee was investigated 
intensively by visual inspections. These costs are calculated for two years of visual inspections 
by the following values: 

• Personal time: [h] 468 

• Average specific costs for staff and vehicle: [€/h] 200 

For the digital solution, the costs of the measuring systems as well as the staff costs for 
campaign planning, regular maintenance of the sensors and evaluation of the data must be 
considered. These costs are calculated by actual project costs for two years of investigation in 
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the Fennsee area. The cost for the measurement systems are at 4.760 € for the EC-logger and 
1.500 € for KANDOs MP-System. Regarding the workload, three hours for campaign planning 
and evaluation as well as two hours with two persons for the maintenance in the field are 
counted for every two weeks. 

• Equipment costs for 5 EC-sensor systems: [€] 23800 

• Equipment costs for 5 MP-sensor systems: [€] 7500 

• Personal time: [h] 364 

• Average specific staff costs: [€/h] 90 

 

𝐾𝑃𝐼 2 =  
𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡𝑠𝐷𝑆 2𝑦𝑒𝑎𝑟𝑠⁄ + 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠𝐷𝑆

𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡𝑠𝑉𝐼 2𝑦𝑒𝑎𝑟𝑠⁄
=

∑  (𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒𝐷𝑆∗𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑡𝑎𝑓𝑓 𝑐𝑜𝑠𝑡𝑠)+ ∑(𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠)

∑(𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒𝑉𝐼∗𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑡𝑎𝑓𝑓 𝑐𝑜𝑠𝑡𝑠)
 =

    …  =  
(364ℎ ∗ 90 €ℎ)+ (23800€+7500€)

(468ℎ ∗ 200
€

ℎ
)

 =  64060€

93600€
 = 0.68 

4.4. Return on experience 

Both sensor systems (MP and EC) are easy to handle and install, without going into the 
manhole. In case of the EC system, it has been shown that the cables aren’t robust enough for 
a permanent use inside the sewer, as five cables got broken within less than one year. Another 
challenge with the EC system consists in the performance of the logger, which were partly not 
able to connect to the laptop anymore. 

There have been a few starting issues with the network connection and the data transmission 
of the KANDO smart unit. After solving these problems, the MP sensors and the smart unit 
worked well. But also, the KANDO sensor system sometimes had software issues which 
weren’t possible to solve in the field. 

The KANDO platform gives a comfortable overview of the data, but for including the rain data, 
the data has to be downloaded and processed further. The KANDO algorithm was developed 
to detect industrial sewage and should be further adapted for sanitary sewage in stormwater 
system. 

At one measuring site, both the EC and the MP sensor from KANDO have been installed in 
parallel to compare both sensors. It was noticed that the EC system always measures a 
minimally higher EC values than the KANDO system. Nonetheless, this offset is not critical as 
both sensors agree on the observed EC dynamics (e.g., the time of peaks).  

It is assumed, that DS9 can be easily transferred to another area or city to investigate illicit 
connections. The developed measurement and evaluation method were transferred into the 
daily business of BWB and will be used at other areas soon. 
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5. DS8: DTS sensor for tracking illicit sewer connections 

5.1. Digital solution 

Illicit connections (IC) of sanitary sewage to the storm sewer system, usually due to 
unintentional errors during sewer construction or rehabilitation, are a significant source of 
pollution for surface waters and can threaten human health in case of bathing waters. Finding 
these illicit connections is like looking for a needle in a haystack as illicit connections usually 
occur at selected points within a large sewer network and usually happen intermittently.  

Distributed Temperature Sensing (DTS) is used as the second element in a two-step approach 
to locate unknown illicit connections in the storm sewer network. While the first step 
(electrical conductivity and multiparameter sensors, DS9) aims to identify hotspot regions 
with a high likelihood of illicit connections, DTS is used to pinpoint the exact locations within 
these hotspot regions. 

The DTS solution makes use of fiber-optic cables that are installed over the full length of the 
considered sewer system and that are connected to a centrally located measuring unit (see 
Figure 14). Using the principle of laser light reflection (Raman backscattering) the fiber-optic 
cables can serve as large temperature sensors with a high temporal and spatial resolution 
(temperature readings typically every 30 seconds and for every 50 cm along the cable).  

Using the large dataset of temperature measurements in the storm sewer, illicit connections 
are identified searching for any type of anomalies in in-sewer temperatures. For instance, a 
sudden temperature increase at a certain location suggests the inflow of relatively warm 
(domestic) wastewater at that location. A continuous temperature decrease at a location is 
often associated with a continuous inflow of, e.g., groundwater or inflowing surface water. 
The possible source of each inflow can be studied based on its temperature profile 
(warm/cold, intermittent/continuous, daily/infrequent, etc.). Data evaluation is done by visual 
inspection of temperature plots as well as by automated algorithms that are trained to scan 
and identify ‘classic’ anomalies in the dataset.  

Monitoring campaigns generally last a few weeks to include infrequent discharges to the 
sewer, and to account for holidays (no discharges) and rainy periods (when the inflow of rain 
disturbs the temperature profile in the sewer and can ‘hide’ smaller inflows of wastewater 
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into the sewer).

   
Figure 14: Schematic overview of DTS measurements in a storm sewer (left); example of a mobile DTS unit and several reels 
with fiber-optic cables prior to installation (right). 

5.2. Demo description 

The solution is demonstrated in a separate sewer system located in the central-western part 
of Berlin, Germany. It is the stormwater catchment of the small urban lake Fennsee with major 
water pollution. There are suspicions that the observed pollution is mainly due to illicit 
connections, which is the main reason for selecting the site. The entire stormwater catchment 
has an area of 220 ha, a sewer length of 39 km, around 800 manholes and approximately 1500 
house connections. Using EC measurements, about five hotspot areas (with a relatively strong 
suspicion of illicit connections) have been determined (see DS9). 

DTS is applied in a selected hotspot region that comprises approximately 1,500 m of storm 
sewers around the Wiesbadener Strasse, see Figure 13 (left red circle) and Figure 15 (storm 
sewers in blue). The DTS unit is set up at the Bezirksamt Charlottenburg at the Sodener 
Strasse. From there, two fiber-optic cables (cable 1 of 1,500 meter and cable 2 of 1,100 meter, 
see Figure 15) are used to monitor the full sewer length in the area. Due to dead-end streets 
and a decentral location of the DTS unit, the required cable length is longer than the observed 
sewer length. 

The monitoring campaign started directly after installation of the cables at September 23rd, 
2021 and lasted for five weeks until October 28th, 2021.  
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Figure 15: Overview of studied sewer system and fiber-optic cable routes (left); DTS unit installed at Bezirksamt Charlottenburg 
(right) 

5.3. Assessment of the digital solution 

The benefits of the solution have been assessed via two key performance indicators (KPI) 
comparing the application of DTS with that of CCTV inspection. Both of these methods aim at 
finding the exact locations of illicit connections within a known hotspot area. The results are 
summarised in Table 7. Details on considered input data as well as calculations are given in 
the subsections below. 

 

 

Table 7: Overview table of KPI assessment 

KPI Short description Quantification 

IC 
detection 

(additional) IC detected by DTS compared to 
CCTV per km sewer investigated 

𝐾𝑃𝐼 1 = 0.67 𝐼𝐶/𝑘𝑚 

 

OPEX 
ratio 

costs of DTS compared to CCTV per km sewer 
investigated 

𝐾𝑃𝐼 2 = 3.55 

5.3.1. KPI 1: IC detection 

For this KPI, the number of illicit connections that were found during the DTS monitoring 
campaign is compared with the results of earlier CCTV inspection in the same area. Using DTS 
one illicit connections was discovered; with the original CCTV campaign no such connections 
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were found. Over the inspected sewer length of approximately 1.5 km, this yields an additional 
0.67 IC per km of sewer length.  

𝐾𝑃𝐼 1 =  𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝐶𝐷𝑇𝑆 =  
𝐼𝐶𝐷𝑇𝑆 −  𝐼𝐶𝐶𝐶𝑇𝑉

𝑙𝑒𝑛𝑔𝑡ℎ𝐷𝑇𝑆

=  
1 − 0

1.5 𝑘𝑚
= 0.67 𝐼𝐶/𝑘𝑚 

Historical CCTV investigations at the Fennsee serve as a baseline to compare the goals of the 
digital solution with classical methods. It should be noted that these CCTV inspections were 
mainly done for detecting structural defects of the pipe, and not specifically for finding illicit 
connections. In this sense it does not benefit from ‘prior knowledge’, in contrast to the DTS 
monitoring. In the years from 2010 to 2019 more than 1000 visual inspections (looking into 
manholes) in nearly 800 sewers have been made, but no illicit connections could be identified 
this way. Also, in the years 2001 to 2017 roughly 300 sewer sections were inspected using 
CCTV (inspecting entire sewer sections using a mobile camera). Based on these inspections six 
sewers with indications for illicit connections have been found. None of these were in the area 
currently investigated with DTS. 

An example of the DTS monitoring results is presented in Figure 16 (left). The horizontal axis 
gives length along the fibre-optic cable in the sewer, the vertical axis represents time, and the 
colours correspond to measured temperature values according to the colour bar on the right. 
In this example we see a sudden temperature increase (from around 20°C to around 35°C) 
around 09:00 in the morning on September 26th, 2021 at x = 814 m along the fibre-optic cable. 
This temperature variation is likely due to the inflow of (warm) wastewater from, e.g., a 
shower or bath. The discharge lasts for a few minutes, after which the in-sewer temperature 
at x = 814 m slowly decreases to ambient temperatures. The warm water moves downstream 
while gradually losing its warmth to the surroundings. The location of the observed inflow is 
indicated in Figure 16 (right).  

 
Figure 16: Example of DTS monitoring results (left); corresponding location of the suspected illicit connection (right)  

At that location in the storm sewer inflows were observed on 55 occasions in the five-week 
monitoring period, indicating an average of about two spills per day. Typically, the first spill 
began early in the morning (around 06:00), except for the weekend (08:00-10:00). The 
number of discharges as well as the observed pattern correspond well to a typical household 
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pattern. The illicit connection has been confirmed in the field by inspection of the stormwater 
house connection in cooperation with the caretaker of the building. 

5.3.2. KPI 2: OPEX ratio 

This KPI compares the costs of application of CCTV and DTS, expressed per 1.5 km of inspected 
sewer length. For DTS the costs comprise: 

- installation and removal work: 24.000 € 
- equipment rental: 20.000 € 
- organization, data analysis and reporting: 20.000 € 

These values are based on actual costs for the Fennsee project. Typically, project costs are 
strongly determined by project organization, scale of the project, and purchase or rental of 
equipment. 

For CCTV the costs comprise 18.000 €. The value is based on average costs of 12 €/m sewer 
for CCTV inspections in Germany. Consequently, the OPEX ratio assessment yields 

𝐾𝑃𝐼 2 =  𝑂𝑃𝐸𝑋 𝑟𝑎𝑡𝑖𝑜 =  
𝑐𝑜𝑠𝑡𝐷𝑇𝑆 𝑙𝑒𝑛𝑔𝑡ℎ𝐷𝑇𝑆⁄

𝑐𝑜𝑠𝑡𝐶𝐶𝑇𝑉 𝑙𝑒𝑛𝑔𝑡ℎ𝐶𝐶𝑇𝑉⁄
 =  

(24000€+20000 €+20000 €) 1.5 𝑘𝑚⁄

18000€/1.5𝑘𝑚
 =  

42666 €/𝑘𝑚

12000 €/𝑘𝑚
 = 3.55 

This is a 3 ½ times increase in OPEX. Considering the costs, it should be noted that both 
methods (DTS and CCTV) yield different results associated with these costs, see KPI 1 ‘IC 
detection’. 

5.4. Return on experience 

An important aspect in the realization of a DTS monitoring set-up is the connection between 
the fiber-optic cables in the sewer system and the DTS-unit located in a storage cabinet above 
ground (see Figure 15, right). Typically, the access to the sewer system is realized via a sewer 
manhole that allows easy and safe access, e.g., via a fenced-off manhole at a parking lot or 
another location with no or only little traffic. In the Berlin Fennsee area, however, no such 
manhole was available as all storm sewer manholes were located in the middle of streets, see 
Figure 17. 

As an alternative, a connection was realized via the storm sewer connection of an individual 
building. For this, the accessibility of the house connection was first tested using a manual 
sewer pushing rod. Then, the fiber-optic cables were pulled through the house connection 
pulling the rod backwards. This way, two fiber-optic cables were successfully installed via the 
house connection. 
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Figure 17: Storm sewer manhole located in the middle of the street (right); preparations to realize access to the sewer system 
via house connection (left). 
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6. DS14: Low-cost temperature sensors for real-time combined sewer overflow and 
flood monitoring 

6.1. Digital solution 

The solution DS 14 consists of low-cost sensors installed in specific locations of each CSO 
structure that detect sewage discharge events. The sensors are connected with a visualisation 
platform that allows monitoring of what happens in each CSO point. The solution is able to 
monitor and send alarms from a high number of CSO points, thus providing water utilities with 
crucial information on the performance of their sewer networks and detecting critical 
contamination points (see Figure 18).  

 

Figure 18: DS14 concept, an example of online device and web platform interface. 

DS14 is based on temperature measurements and on the principle that, in a CSO event, the 
temperature of discharged wastewater is significantly different from the ambient 
temperature in the sewer atmosphere. Thus, the strategic location of temperature sensors in 
overflow structures can efficiently detect the temperature changes and correlate them as 
discharging events. In the case of dry weather, the sensor measures the air phase whereas, in 
the case of CSO, the discharged storm and wastewater is measured. The start and end of a 
CSO event can be determined via the merging of measured temperatures values in both points 
of the overflow structure. 

DS14 has two versions: offline and online. The offline version consists of two temperature 
loggers installed in the CSO point: one at the overflow crest which measures air temperature 
during dry-weather conditions and water temperature when the overflow crest is submerged 
in case of a discharge, and another logger constantly submerged into the main sewer channel 
which measures wastewater temperature. The online version includes two temperatures 
sensors, one capacitive sensor and one water level sensor for extra-validation of CSO 
occurrence to avoid even more the number of false positives. It is built with high-capacity 
Lithium-ion batteries to maximize its lifetime which is around two years, depending on the 
installation conditions, the number of sensors activated and the number of transmissions. 
Monitoring information is sent to a web platform either by GPRS M2M communication nodes 
or LoRaWAN, a low-energy consumption protocol that uses the EU868 standard. In the 
platform, utilities can visualize the location and status of CSO points of their sewer network. 
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6.2. Demo description 

DS14 has been tested in two demo sites: Sofia (Bulgaria) and Berlin (Germany). Sofia was 
selected as it has a large number of CSO structures with, to date, no monitoring at all. Hence 
the demo project provides great additional knowledge on the location of the major emission 
points and helps to locate suitable mitigation measures in the future. Berlin was selected as 
there are already some water level sensors installed, that can be used to validate the new low 
cast sensors. Further, a hydrodynamic model of the catchment exists, which can be used to 
demonstrate the benefit of a large number of low-cost sensors over a few costly water level 
sensors in terms of model calibration. 

In Sofia, the catchment area of the city has a total surface of 13,640 ha. It is divided into six 
main sub-catchments: Kakach, Suhodolski, Vladayski, Perlovski, Slatinski and Trunk, named 
after the main rivers crossing the city. It is a combined sewer system with the main sewer 
collectors located on the two sides of the rivers. Under dry weather conditions, wastewater is 
drained to the Kubratovo wastewater treatment plant mostly by gravity. Kubratovо WWTP 
treats 300,000 m3/day, which is 70% of its full capacity. Overflows structures in Sofia are 
designed to discharge a six-times diluted domestic outflow and they are inspected twice a 
year by the specialist field team of Sofiyiska Voda (SV). A total of 232 CSO structures are 
present and help to unload the sewer system during rain events. Within DWC, 22 CSO points 
have been monitored, 10 of them with offline sensors and 12 with online sensors. The 
monitoring campaign expanded from October 2020 to the end of the project (~ 2 years in 
total). 

In Berlin, DS14 is installed in its biggest combined sewer catchment “Wilmersdorf” located in 
the central-western part of the city. The catchment has an impervious area of 921 ha, a total 
area of 1,651 ha and drains sewerage of approximately 265,000 inhabitants. The settlement 
structure shows a high variety in population density with little industry and is, therefore, 
representative of municipal wastewater in Berlin. During dry weather conditions, around 
40,000 m³ of wastewater are generated each day and pumped to the wastewater treatment 
plant. Maximum pumping capacity during wet weather conditions is twice the peak dry 
weather flow (2 x 750 L/s = 1.5 m³/s). Excess water is discharged via 19 overflow crests which 
are connected to the receiving river via three CSO outlets. Within DWC, 18 overflow structures 
of the Wilmersdorf catchment are being monitored, 9 of them with online sensors and 9 with 
offline sensors. The monitoring campaign expanded from October 2020 until the end of the 
project (~ 2 years in total). 

6.3. Assessment of the digital solution 

The benefits of DS14 have been assessed via six defined performance indicators (KPI). The 
results are summarised in Table 8. Details on considered input data as well as calculations are 
given in the subsections below. 

Context of the results obtained: KPI’s were calculated based on data obtained during the 
monitoring periods between September 2020 - September 2022 for offline sensors and 
September 2021-October 2022 for the online sensors. As explained in previous reports, the 
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Covid situation and other technical and practical situations had an impact on the deployment 
and functioning of the online sensors. These unexpected scenarios prevented to obtain 
sufficient information and quality-datasets to rigorously calculate KPI’s 5 and 6.  

 

 

 

 

 

 

 

Table 8: Overview table of KPI assessment for measurements in the year 2021. 

KPI Short description Quantification  

1. Number of 
additional CSO 
events detected 

Number of additional CSO 
events detected since DS14 
was applied. 
  

Sofia: ≈30 CSO events/catchment-year  
Berlin: Same number of CSO events (15 events) 
detected by level sensors preinstalled but in a 
higher number of locations. 

2. Detection 
accuracy for CSO 
frequency  

The difference in the number 
of CSO events with other 
monitoring systems and 
DS14. 

Sofia: Not applicable. No other monitoring 
systems were installed in the selected 
catchments.  
Berlin: Same number of CSO events (15 events) 
detected by DS14, when compared with level 
sensors preinstalled.  

3. Detection 
accuracy for CSO 
duration 

Time of CSO discharging 
detected with DS14 and 
other monitoring systems.  

Sofia: ≈140h of yearly CSO average duration 
detected by DS14. Comparison with other 
monitoring systems was not possible. No other 
monitoring systems were installed in the 
selected catchments.  
Berlin: Similar time of CSO duration comparing 
DS14 and level sensors preinstalled.  
Level sensors: 107h of overflow. 
DS14:       116h of overflow.  

4. Capex 
Reduction 

Reduction of capital costs 
related to CSO monitoring 

Significant capex reductions compared to other 
monitoring systems available in the market.  
DS14 Offline:77-92% reduction in costs/unit. 
DS14 Online:46-78% reduction in costs/unit. 

5. Opex 
Reduction 

Reduction of operational 
costs related to CSO 
monitoring. 

Opex reduction calculation could not be 
completed due to operational limitations with 
the online devices.  
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6. Increase in 
model accuracy 

Increase in hydraulic model 
accuracy due to data 
provided by the CSO sensors 

Could not be completed due to time limitations 
with the temperature sensors data.  

 

6.3.1. KPI 1: Number of additional CSO events detected.  

KPI 1 accounts for the number of additional CSO events detected since the deployment of 
DS14. As expected, there has been an increase in the CSO events detected in Sofia, where no 
CSO detection systems existed to date, and a confirmation of the number of events occurring 
in Berlin Wilmersdorf catchment, where CSO detection instruments were originally in place. 
Overflow events were calculated from the temperature data obtained from the sensors and 
compared with rainfall data for each structure and catchment where the CSO structure was 
located.  

Sofia: Sofia has a total of 232 overflow points and DS14 was implemented in 22 CSO structures 
spread in 6 sub-catchments of the city. Results obtained showed that in 2021, 132 rain events 
occurred and produced ≈30 CSO events all over the city. In CSO points PR01KAK&PR07LSU: 30 
CSO events occurred, in PR11GAR&PR18LSU: 29 CSO events, in PR01DSL&PR23TR2: 35 CSO 
events, in PR13DSL: 30 CSO events and in point PR46LVL: 37 CSO events. In the same period, 
2 CSO structures showed a significantly higher number of CSO’s. 71 CSO events were detected 
in PR15TR2 (Perlovskisubcatchment) and 66 CSO events in PR30LVL (Vladayski subcatchment). 
Sofiyska Voda confirmed that those CSO structures had a lower overflow crest and tend to 
accumulate a lot of debris which means that could spill more frequently, even in very light rain 
conditions. Information obtained helped to identify some of the most critical structures in 
terms of discharge of sewage in Sofia. This information was very important for Sofiyska Voda 
as they had, for the first time, data about the geographical distribution of overflowing that 
allowed them to start designing adequate actions accordingly.  

Berlin: In Berlin, 18 overflow structures of the Wilmersdorf catchment were monitored with 
DS14. Results obtained showed around ≈15 overflow events from a total of 57 rain events in 
2021. The Wilmersdorf catchment had in place 2 water level sensors and those were used to 
compare and validate the results of DS14. For instance, the level sensor installed in Rue19 
showed and occurrence of 15 CSO events and the DS14 offline sensor installed nearby showed 
the same number of CSO’s. That indicates the performance of DS14 was as good as other 
methods previously deployed in the catchment. No additional overflows were detected. An 
additional benefit of DS14 is the higher number of structures monitored compared to the low 
number monitored with level sensors. That means we were able to account for the 
geographical distribution of each CSO event. Figure 19 below presents the overflows produced 
by a rain event on the 23/12/2021 (15.2 mm rain in 23.6 hours). The red rectangles show the 
locations where there was as spill of sewage, which in this case was in 10 different points.  
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Figure 19: Geographical distribution of the CSO event occurred on the 23/12/2023 in Berlin’s Wilmersdorf catchment. 

 

 

6.3.2. KPI 2: Detection accuracy for CSO frequency-occurrence 

KPI 2 consist of a comparison between the number of CSO events detected with other 
monitoring systems installed and DS14. 

Sofia: KPI 2 could not be calculated for Sofia as DS14 is the first CSO monitoring equipment 
deployed in the different catchments of the city, so no reference values were available.  

Berlin: The Wilmersdorf sewer system was equipped with commercial water level sensors 
(external to the project) in 2 locations nearby overflowing structures (Rue 19 and Rue 20). 
Water level sensors measured the depth of the water surface in the sewer and, knowing the 
depth of the overflow crest in each structure, level data can be used to estimate the 
occurrence of overflowing. As explained above, DS14 and water level sensors installed in 
nearby locations showed a very similar behaviour in terms of number of CSO’s detected, 15 
CSO’s in 2021. As an example, Figure 20 below presents the CSO occurrence detection in 
RUE20 from February to July 2021. Rainfall data (red line) showed a very strong correlation 
with the increase of the water level in the sewer (blue line). According to water level 
measurements, on 4 occasions the water reaches the overflow height, fixed at 32.5m (dashed 
green line). Results from DS14 in RUE20 (red dots) detected also total of 4 overflow events in 
the same period.  
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Figure 20: Rainfall, water level and DS14 corresponding to RUE20 CSO point in Berlin. 

6.3.3. KPI 3: Detection accuracy for CSO duration 

KPI 3 consists of the time difference between the duration of CSO events detected by DS14 
and the duration with other monitoring systems. KPI 3 was calculated according to the 
following expression: 

 

KPI 3 values higher than 1 indicate the higher time of sewage discharged detected by DS14 
compared to other methods. KPI 3 can be calculated either for a single CSO structure or for a 
catchment.  

Sofia: KPI 3 could not be calculated for Sofia as DS14 is the first CSO monitoring equipment 
deployed in the city, so no reference values were available. However, it is worth mentioning 
that the duration events detected in 2021 lasted ≈145h (≈30 CSO’s from 122 rain events).  

Berlin: In 2021, water level sensors installed in Rue 19 detected a total of 107 hours of CSO’s 
for the whole year. In the same structure and same period, DS14 offline sensors detected a 
slightly higher number of duration discharges, 116 h. This corresponded to a deviation of +7h 
(+8%) from the water level reference measurements. These differences are most likely 
explained by the delay of DS14 to recover normal temperature conditions of the sewer at the 
end of CSO events, which could lead to a small overestimation of the spilling time. Rue 19 was 
the most overflowing structure in the whole catchment, so the overall Wilmersdorf numbers 
were very similar to those observed in this structure. DS14 and water level sensors data was 
crossed with rain records to identify and discard potential false positive CSO events.  

6.3.4. KPI 4. Capex reduction 

Capital costs were calculated based on the cost of an individual sensor and its installation. The 
commercial cost estimated for DS14 online version was 1388 €/unit while the cost for DS14 
offline version was 459 €/unit. Cost of commercial water levels in the German, Bulgarian and 
Spanish markets was used to calculate the difference in the capital expense of sensors. Table 
10 below presents the cost of the commercial sensors and the % reduction compared to DS14. 
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Table 9: Cost comparison and % reduction of DS14 online and DS14 offline compared to other monitoring methods 
commercially available. 

Water level sensor cost  
Provided by BWB and SV 

DS14 Online:  
Cost 1338 €/unit 

DS14 Offline:  
Cost 459 €/unit 

Germany Level sensor. Cost 6500 €/unit 78%  92%  

Bulgaria Level sensor.  Cost 4638 €/unit 70%  90%  

Spain Level sensor.    Cost 2500 €/unit 46%  77%  

  

DS14 is significantly cheaper than usual water level meters on the market. The cost of the 
DS14 online version is 46-78% lower than other methods while the cost of the offline version 
is 77-92% lower. That means that for a fixed budget, a higher number of CSO structures could 
be monitored using DS14. However, the DS14 online version is still in the prototype stage with 
technical problems to be addressed before being considered commercially ready. Also, DS14 
offline version is ready to be marketed but its lower cost is due to is limited features such as 
no real-time alarms and manual download of the data.  

6.3.5. KPI 5. Opex reduction 

Operational expenses could not be calculated for DS14. DS14 online prototypes operated only 
for a limited time at the end of the project. It was deemed not sufficiently representative to 
establish its operational costs. This was due to delays in its construction, its lengthy 
deployment and unexpected technical problems that increased the time dedication of BWB 
and SV field teams to repair and ensure its functioning. It is assumed though that if working 
properly, the DS14 online costs would be in the same order of magnitude as the other 
methods such as water level meters. BWB estimated the average operational expenses of the 
level sensors as 1750 €/year. With regards to the DS14 offline sensors, Sofiyska Voda current 
practice is to proactively check the offline CSO points monthly, which increases its operational 
expenses.  

6.3.6. KPI 6: Increase in model accuracy 

KPI 6 consisted on the increase in hydraulic model accuracy due to data provided by the CSO 
sensors. KPI 6 could not be assessed due to a delay in obtaining reliable data on the 
temperature sensors, necessary for the hydraulic calibration. In an additional study, it was 
shown, that the calibration of a dynamic rainfall-runoff-routing model using fictitious 
temperature data achieved the same accurate results as a conventional calibration using 
water level data. ICRA and KWB agreed to continue this task beyond the end of the project.  

6.4. Return on experience 

Return of experience from city partners point of view: The return of experience from both SV 
and BWB has been overall positive. They highlighted the ease of installing the sensors, both 
for the online and offline versions, even for inexperienced operational teams and the 
simplicity in maintenance tasks such as replacing batteries and cleaning sensors. They also 
mentioned the user-friendly interface of the web platform designed for uploading and 
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monitoring the overflow events. On the things-to-improve side, they pointed out that 
hydrodynamics of the offline sensors could be improved to avoid the loss or malfunctioning 
of those sensors due to shear and strain produced by wastewater. Also, an increased battery 
life of the sensors would be very helpful to reduce the frequency of manhole maintenance 
activities for operators. The technology providers, ICRA and IoTsens, have already addressed 
these issues and the updated sensors are sent to both Berlin and Sofia. SV and BWB also 
suggested a few modifications in some functions in the monitoring platform (e.g., data 
uploading) which have also been addressed.  

Return of experience from the technology providers point of view: From ICRA and IoTsens, the 
return of experience is also largely positive. DS14 has been confirmed as a good-valid solution 
for mapping CSO events in a city, which fits in the needs of SV and BWB, and potentially, many 
other utilities in the world. The regular feedback from SV and BWB has been very helpful to 
expand from the initial concept of DS14, identify its limitations and apply upgrades such as 
connection to rain gauges, communication protocols, etc. The greatest challenge was related 
to the operational problems with testing, the construction, the deployment of the DS14 online 
sensors under pandemic conditions. Field teams from SV and BWB were very helpful to resolve 
these limitations, but still, a limited operation time of the DS14 impacted the volume and 
quality of results within the study.  

The main challenges for the last months of the project were to address limitations such as the 
reliability of the online prototypes, the suboptimal raw data sets, and the improvement of 
CSO event detection algorithms. Despite those setbacks, we were able to address some of 
these limitations. It has to be mentioned that DS14 is not mature enough to hit the market. 
Nevertheless, its development will continue beyond the project in close contact with SV and 
KWB.   
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7. DS15: Smart sewer cleaning system with HD camera and wireless communication 

7.1. Digital solution 

The removal of sediments and blockages from sewer pipes represents a major expense for 
sewer operation and maintenance. However, sewer cleaning is indispensable in order to avoid 
odor and corrosion of sewer pipes and conserve their hydraulic capacity. Usually, cleaning is 
done blindly, i.e., separated from the inspection process, which leads to unknown and often 
unsatisfactory cleaning efficiency. To overcome this lack of coordination between cleaning 
and inspection, a combined sewer cleaning and inspection system is tested as DS15. The 
system called XPECTION consists of a high-pressure cleaning nozzle and a high definition (HD) 
camera that transmits the video signal from the nozzle to the inspector’s tablet by wireless 
connection. The technology can be applied to high-pressure sewer cleaning trucks and allows 
for continuous monitoring of the quality of the cleaning and further detecting and observing 
major defects of the sewer pipes. Figure 21 visualizes the main components of DS15. 

 
Figure 21: XPECTION device for smart sewer cleaning (DS15) consisting of the cleaning nozzle, the inspection camera and a 
control panel for visualization. 

7.2. Demo description 

The solution is demonstrated in the cities of Sofia, Bulgaria, and Berlin, Germany, during nine-
month-monitoring campaigns.  

In Sofia, around 10 km of sewer pipes were selected for demonstration. These pipes are either 
located in areas known to have frequent operational problems or are most likely currently 
subject to acute blockages in the combined sewer. The selected pipes have a circular or egg-
shaped cross section and a diameter/height between 200 and 800 mm. In addition to the 
cleaning process, the videos from XPECTION increase the inspected length of sewer pipes and 
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give additional information on the structural pipe condition. For the assessment of its 
performance, DS15 will be compared to the cleaning with a standard nozzle (“blind” cleaning). 
In total, 2.3 km of the designated 10 km of pipes have been inspected by the end of the 
project. 

In Berlin, the demonstration of DS15 is part of the standard operational routine and includes 
storm, sanitary and combined sewer pipes. Four different use cases are distinguished:  
(i) standard cleaning, (ii) pre-cleaning for CCTV inspection, (iii) observation of known sewer 
defects and (iv) visual control of obstacle removal in sewers. In parallel to the demonstration 
of DS15, pipes are cleaned and inspected with standard techniques (“blind“ cleaning, 
panorama video camera). For the performance assessment of DS15, monitoring time, effort and 
benefits for each operational working step in the daily working routing are compared for the different 

use cases. Table 10 gives an overview of the field operations in the demo in Berlin.  

Table 10: Overview of the current status of the operations 

 XPection Current practice 

Standard cleaning 29 operations / 44 sewers 44 operations / 44 sewers 

Pre-cleaning for CCTV 5 operations / 5 sewers 5 operations / 12 sewers 

Observation of known damages 24 operations / 25 sewers 4 operations / 4 sewers 

 

7.3. Assessment of the digital solution 

During the first part of the demonstration, DS15 has proven to be a helpful additional tool for 
the cleaning teams in both Sofia and Berlin. DS15 has been particularly useful for cleaning and 
inspection of non-circular pipe cross sections, where no other visual technology has been 
applied. The solution is a good tool to find hidden connections and manholes, especially, in 
small diameter pipes, where CCTV crawler could not be applied. 

For each usecase, the operational workflow was described with respect to the current practice and 
usage of DS15 in detail. The differentiation of working steps such as preparation at the workyard, 
preparation at the place of action, execution of the application, evaluation of the action and post-
processing is the necessary basis to compare qualitatively and quantitatively the effort and benefits of 
the new technology in relation to the current practice. Beside the time needed for each working step, 

special issues like usability, disruptions, video quality and additional findings were monitored.  

The benefits of the solution have been assessed via predefined performance indicators (KPIs) (see  

 

 

Table 11). The results are summarised and details on considered input data as well as 
calculations given in the subsections below. 
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Table 11: Overview table of KPI assessment  

KPI Short description Quantification 

1. Cleaning effort 
 

Time needed for the cleaning steps 
(mounting the equipment; cleaning; 
reinstallation) using digital solution 
XPECTION (DS) compared to Standard 
Cleaning (SC) 

 

= 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝐷𝑆 [𝑚𝑖𝑛]

𝑎𝑣𝑎𝑟𝑎𝑔𝑒 𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑆𝐶 [𝑚𝑖𝑛]
 ∗

 100% =  
68𝑚𝑖𝑛

30𝑚𝑖𝑛
 *100% = 227%  

2. Inspection efficiency Related to: 
1.1. Observation of known damages 
1.2. Finding new damages 

Number of defects 

3. Financial value 
 

1.1. CAPEX (XPECTION compared to 
current techniques: Blind nozzle; 
Telescopic mirror (camera); CCTV) 

1.2. OPEX (XPECTION compared to 
current techniques) 

• Personal costs 

• Travel costs  

Expenses, € 

 

7.3.1. KPI 1: Cleaning effort 

This indicator compares the execution time of the individual steps in the process of sewer 
cleaning when performed in a classic way, with a blind nozzle, and using the video nozzle. 

Table 12: Representation of cleaning effort calculation. Average values (in min) from demo in Berlin and Sofia are taken. 

 Xpection Standard Nozzle 

Number of operations 29 BWB + 15 SV = 44 44 BWB + 15 SV = 59 

Preparation time [min] 15 8 

Cleaning time [min] 39 17 

Reinstallation and evaluation [min] 14 6 

Total time [min] 68 31 
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7.3.2. KPI 2: Inspection efficiency 

The indicator evaluates the ability to detect structural defects along the sewer sections using 
the appropriate cleaning equipment and/or visual control. 

Table 13: : Representation of inspection efficiency is calculated from 36 operations with XPECTION in Berlin and Sofia, 11 
”blind” cleaning operations in Sofia and 4 operations with electronic mirror in Berlin. 

 XPECTION Standard Clean Electronic Mirror 

Number of operations 36 11 4 

Damages found 42 1 2 

Percentage 117 % 9 % 50 % 

7.3.3. KPI 3: Financial value 

CAPEX 

The calculations in Table 14 compare the capital costs of cleaning and video inspection of the 
cleaned sewer sections. It is accepted that when cleaning, we need a cleaning truck and it is a 
constant in cleaning operations(A). In order to make smart price-quality decisions, the table 
also describes the added value of each of the combinations. 

OPEX 

The operation and maintenance team of Sofiyska voda AD uses a suitable type of sewer truck 
for cleaning works. To perform a video inspection, a video inspection team with a video 
equipment comes to perform the recording after cleaning the pipe. The XPECTION 
demonstration showed that in order to use the technology, it is needed qualified staff to work 
with it, delivering it to the site in a separate vehicle. Thus, the use of XPECTION is not 
distinguished as an operational cost from the operational cost of video recording of any type. 
There is no need for the CCTV crawler team to perform with XPECTION. It can be done by a 
sewer inspector, so that the CCTV crawler team is free for other inspections. 

In common practice an increase of OPEX can be observed when cleaning quality occurs not to 
be good enough, and there is need of repetition of the cleaning and the visual control. In this 
case, we have twice as high operating expenses.  

At the end of the project the XPECTION Lite technology was presented from IPEK to SV. 
XPECTION Lite has less components than XPECTION. Considering the technical characteristics 
presented there, probably no additional team to accompany the cleaning team would be 
needed. This will lead to OPEX reduction due to field visit by the cleaning team only. 
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Table 14: CAPEX values are rounded values without VAT, taken from Sofia’s last delivery contracts. The price of XPECTION and 
XPECTION LITE is provided from IPEK. 

Type of cleaning and 
visual control 

Equipment for: Price, Euro Added value 

Standart Cleaning 
Cleaning Truck(A) + Standard 

nozzle(B) 

(A) + (B): from 100 to 
850, depending on the 

size of the nozzle 
Only cleaning 

Standart Cleaning + 
Visual control of 

telescopic camera 

Cleaning Truck(A) + Standard 
nozzle(B)+ Inspection team with 

telescopic camera(T) 

(A) + (B) + 
(T):16500euro 

Cleaning; Live quality control 
of the cleaning; Live visual 

control of the structural 
condition of 20-30% the pipe 

Cleaning with 
XPECTION 

Cleaning Truck(A) + Inspection car 
with XPECTION nozzle(X) 

(A) + (X):37800euro 

Cleaning; Live quality control 
of the whole cleaning length; 
Live rough visual control of 
the structural condition of 

the pipe 

Standart Cleaning + 
Visual control of 

CCTV robot camera 

Cleaning Truck(A) + Standard 
nozzle(B)+ Inspection team with 

CCTV robot camera- C 
(A)+(B)+C: 261000euro 

Cleaning; Live quality control 
of the whole cleaning length; 
Live detailed visual control of 

the structural condition of 
the pipe; Coding of defects; 

Export CCTV data in different 
formats 

Cleaning with 
XPECTION LITE(from 

documentation) 

Cleaning Truck(A) + XPECTION LITE 
nozzle( no inspection car required) 

(L) 
(A)+(L): 11000euro 

Cleaning; Quality control of 
the whole cleaning length; 
Rough visual control of the 
structural condition of the 

pipe. 

 

7.4. Return on experience 

For Sofia and Berlin, demonstration of the solution was provided and served as the time to 
get used to the technique and evaluate the advantages and the disadvantages of its 
application. 

DS15 has proven to be perfect additional tool for the cleaning team, used for the several use-
cases, where the CCTV was not applicable: 

• Cleaning and inspection of Egg-shaped profiles; 

• Inspection of the structural condition of small diameters; 

• Finding and observation of pipe defects; 

• Finding connections and hidden manholes. 
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Although the usage of DS15 is resulted in additional time and effort of the operational team 
compared to the routine practice, the video quality is very good and gives good information 
about pipe’s structural and operational condition. The huge benefit in using DS15 is this good 
video instead of issuing a work order and performing a new CCTV inspection. Observations, 
where a picture inside the sewer is needed, are actually carried out with an electronic mirror 
(or telescopic camera) and often it is hard to see the point of interest, if it is more than 10m 
away from the manhole. 

During long inspections the transmission provided by DS15 is not so good but the nozzle keeps 
the video and it can be downloaded, later, in the office. In Egg-shaped cross-sections the 
transmission is twice as a good. The various cleaning nozzles are robust and heavy, as they 
should be to work in the sewer system. The most comfortable one, for the small diameters 
was the “Brendle Duebre roudjet nozzle”. The software is user-friendly. The menus and 
buttons inside are logical and easy to navigate. 

 
Figure 22: A iPEK XPECTION device for smart sewer cleaning.  
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Figure 23: A iPEK XPECTION device for smart sewer cleaning in usage in Sofia.  
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8. DS11: Sewer flow forecast tool box 

8.1. Digital solution 

The integrated management of the sewer network and the wastewater treatment plant 
(WWTP) is important to minimize CSO emissions, WWTP bypasses8 and pollutant loads 
emitted via the WWTP. To better control the filling and emptying of retention basins as well 
as treatment processes at the WWTP, forecasts of the inflow to the drainage system and the 
WWTP are required. However, inflow forecasts derived from simpler methods are typically 
highly uncertain and only have relatively short forecast times.  

The goal of DS11 (“Improved machine learning (ML) sewer inflow forecast”) is to enhance the 
performance and accuracy of the inflow forecast to the wastewater treatment plant (WWTP) 
so that control strategies between the sewer system and the WWTP can be optimized and 
CSOs and bypasses of untreated sewage to receiving waters can be further reduced. The 
solution, which comprises routines for data processing and the ML model applications, will 
provide short- and medium- time forecasts of inflow timeseries and probability of rain, 
respectively. The short-term inflow forecasts with lead times up to three hours will help to 
guide the control decisions at the WWTP and prepare for high flow conditions during rainfall. 
The medium-term rain probability forecasts with lead times up to 36 hours enable more 
flexibility for emptying the storage basins compared to the current practice, in which all basins 
must be emptied within 24 hours9 after the rainfall. Retention and slow emptying are relevant 
when runoff exceeds the biological treatment capacity at the plant or the actual biological 
capacity at the plant is lower than the design capacity due to low temperatures and/ or after 
long lasting rain events.  

The short-term forecast is based on a point prediction ML model which provides a unique flow 
value for each time instance of the forecasting period. The medium-term forecast is a 
probabilistic ML model, which also allows to reveal uncertainties in expected rainfall, 
respectively inflow. Both models are part of a software package, that also includes different 
components for data processing, deployed in a real-time environment.  

Automatic data services have been set up to ensure near real-time updating of the database 
hosted on a cloud service, enabling easy retraining of the model on new data. The ML model 
will produce forecasts to be used for the decision support system (DSS) and real-time control 
algorithms (DS12) for both dry and wet flow conditions. Predictions made for the end of 
October 2021 are shown in Figure 24. The input data arrives from different sources/locations. 
One or more of the sources are occasionally interrupted. A total of five combinations of 
missing data can occur and to produce continuous inflow predictions, five different ML models 

                                                      

8 Bypass is a term used at the WWTP for water that bypasses the biological treatment step at the WWTP and is led only 
mechanically cleaned to the recipient.  
9 In Denmark the rule of thumb for emptying retention basins is 24 hours. The arguments are, that otherwise the basin will 
be full when the next rain events hits the catchment and increased biochemical reactions in the retention basins taking place.   
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have been trained and deployed to account for missing data instances. The five situations are 
presented in the figure below, and e.g., “NoNovafos” means no data from Novafos.  

 
Figure 24: To make the machine learning predictions more robust, five models with different inputs were created. This figure 
shows observations and predictions from the five different ML models. 

We have monitored the “uptime” for the different data suppliers, HOFOR, Novafos and 
BIOFOS. The records cover the period 11. October 2021 to 30. October 2022. During the 12-
months period, data have been missing from Novafos. This is rather unfortunate, as a major 
part of the catchment is within the territory of Novafos. The stats are listed in Table 15. 

Table 15: Overview of sensor data availability for the ML routine during a 12-month period 

Sensor availability % of uptime 

All sensor data 14 

No data from Novafos 65 

No data from HOFOR 0 

No data from BIOFOS 0 

 

The total uptime of the ML routine is 83% of the calendar time, or in other words, in 17% of 
the time the ML has been non-active for different reasons, like server repair, sensor 
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maintenance and lack of attention from the data owner. Only in 14% of the overall time, all 
data sources have been available for the ML forecast.  

The medium-term forecast is provided as a visualization of the precipitation forecast. The 
original plan was to develop an ML model to predict the WWTP inflow based on Numerical 
Weather Prediction (NWP) data. When the trained prediction ML model was ready to be 
deployed in real time, we found that the data provider no longer provided the necessary NWP 
data. This spawned discussion of possible solutions, through which it was realized that 
visualization of the raw precipitation forecasts would be more useful for coordination of basin 
emptying in the catchment. The development of the medium-term forecast model was 
completed in 2021. 

8.2. Demo description 

The solution is tested in the catchment area Damhusåen in Copenhagen. The catchment’s sewer 

system, operated by three different sewer operators (HOFOR, NOVAFOS, Frederiksberg Utility) is 
mainly combined (85%), with ca. 200,000 m³ established storage volume and ca. 86 CSO structures 
across the catchment, representing 45% of all CSO structures in BIOFOS total catchment area. 
Stormwater runoff and wastewater is primarily transported by gravity and control options are limited. 

The ML model for short-term forecasting of inflow to the WWTP has been trained using real-
time volume, water level and flow sensor data from the sewer system and weather radar 
observations. The ML model produces forecasts to be used for the decision support system 
(DSS) and real-time control algorithms (DS12) for both dry and wet flow conditions. The short-
term inflow prediction model is comprised of two sub-models, as shown in Figure 25. 

 
Figure 25: WWTP inflow prediction composite model. 

The first sub-model translates the weather radar image to a rain intensity category. The output 
from the first sub-model is given as input to the second sub-model, which predicts the inflow. 
For the first sub-model, we experimented with a range of deep learning model architectures, 
including different convolutional and recurrent neural network configurations, cost functions, 
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observation weights, and optimizers. The architecture settled upon is shown in Figure 25. For 
the second sub-model, we compared random forests, neural networks, Gaussian processes, 
multivariate linear regression, and several variants of gradient boosting, including 
probabilistic versions. These were evaluated using the root mean square error (RMSE), and 
the gradient boosting model as implemented in the LightGBM package outperformed the 
other models. When retraining the model, several runs with different hyper-parameter 
settings are fitted on training data. Validation data is used to find the best model, and that 
model is deployed if it outperforms the currently deployed model on test data. 

We evaluated deep learning models for medium-term inflow forecasts based on NWP data 
using archives of relatively high-resolution historical data of ensemble forecasts. This data 
type is no longer available, so the focus of this work has shifted to visualization of probabilistic 
precipitation forecasts. Through dialogue sparked by the unavailability of the original data, we 
have uncovered that medium-term probabilistic precipitation forecasts are likely to be of 
higher value than medium-term inflow forecasts for planning purposes at the WWTP and 
upstream utilities. 

8.3. Assessment of the digital solution 

The benefits of the solution have been assessed via three defined key performance indicators 
(KPI). The results are summarised in Table 16. Details on considered input data as well as 
calculations are given in the subsections below. 

Table 16: Overview table of KPI assessment 

KPI Short description Quantification 

1. Accuracy for short-term 

inflow forecast during wet 

weather - 3h 

Accuracy of the new inflow forecast 

compared to the existing inflow forecast 

based on a linear reservoir model, 

operational at the WWTP and observed data. 

Accuracy is quantified via mean error (ME) 

and root mean square error (RMSE) with 

regards to observations. Different forecast 

lead times up to 2 hours are considered. 

35-42 % for lead times 

between 30 and 120 min;  

The achieved results are 

reported in 8.3.1 

2. Accuracy of forecast 

time for dry weather – 36 

h 

 

The KPI evaluates the accuracy of dry weather 

forecasts for the next 36h by comparing 

forecasts with registered rain data respective 

to the lead times.  

 

Percent [%] categorized as 

correct dry weather forecasts  

The achieved results are 

reported in 8.3.2 

3. Reduction of wrong 

automatic switching 

between dry and wet 

weather operation at the 

WWTP  

The KPI evaluates whether the new inflow 

forecast model is better than the operational 

inflow forecast model, thereby reducing the 

wrong switches between dry and wet 

weather operation at the plant. 

Count; percent [%]  

The achieved results are 

reported in 8.3.3 
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If deviations between measured and forecasted flows assume both negative and positive 
numbers, the mean error expression does not provide any insights into accuracy of the 
forecast. This has been the case in this project, for which reason the KPI for ME is not 
calculated. The KPI for the RMSE is listed in Table 17 in Section 8.3.1. 

8.3.1. KPI 1: Improved forecast during wet weather 

The performance / accuracy of the new inflow forecasts and the current forecasting system is 
calculated with regards to inflow measurements at the WWTP and the existing inflow forecast 
“STAR”. Performance is evaluated for different forecast times (30, 60, 90 and 120 minutes) as 
the mean error (ME) and the root mean square error (RMSE). 

Two performance statistics are calculated as a function at forecast lead times 30, 60, 90, 120 
minutes. Mean error: 

𝑀𝐸 =
1

𝑁
∑(𝑆𝐼𝑀𝑖 − 𝑂𝐵𝑆𝑖)

𝑁

𝑖=1

 

 

Root mean square error: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑆𝐼𝑀𝑖 − 𝑂𝐵𝑆𝑖)2

𝑁

𝑖=1

 

 

SIMi is the forecasted inflow and OBSi is the observed inflow. 

The KPI values are reported in three Microsoft Power-BI live-reports. A fourth report shows 
the rainfall predictions for the next 12-24-36 h.  

Two reports present data related to rainfall forecasts, based on a numerical weather 
prediction model. One report shows the predicted rainfall for five areas over the catchment 
over the next 36 hours. This report only shows the results from the last few weeks. The other 
report shows how well the predictions fitted with the recorded rainfall. This report goes back 
to 1. July 2022, with a few data gaps. The two other reports show the statistical parameters 
for the flow predictions compared with the measurements and the actual “hit-rate” in 
predicting the flow increases. Both reports include data from June 2021 to date.  

For the in-depth analysis, it would have been relevant and useful to have additional reports 
providing an overview of the timeline marking when the different forecasts have been in 
operation. Another useful aspect we have identified and don’t have considered beforehand, 
is that it could have provided a better performance overview if the KPI’s somehow related to 
events. The current KPI numbers are calculated for the entire timeseries, i.e., dry weather, 
small rain and heavy rain. As the objective of the ML demonstration is to test the capabilities 
in predicting high inflows, the current calculation of the KPI for all data, somehow 
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contaminates the KPI data. This conclusion is reached too late in the project to revise the 
principles but will be considered changed for the continued use.  

Result Inflow forecast: 

The data period covers 20. June 2021 until 20. October 2022, 16 months. The Figure 27 shows 
the full KPI report for the 16 months. The three blocks show statistics for the four different 
forecast periods, 30-60-90-120 minutes. The three blocks display results for following three 
different forecasts:  

1. MIKE+ BASE – hydrodynamic model, base scenario 
2. ML – Machine Learning model 
3. STAR – existing forecast based on a simple reservoir model 

A general note on the numbers is that although they overall cover the same period, the actual 
forecast methods have been active with different percentages/coverage in the total reported 
period from June 2021 to October 2022.  

The STAR forecast has been in operation for several years before DWC project, and there has 
been few interruptions during the project period, so the coverage is close to 100%. 

Figure 26 gives an overview of the “up-time” for the different forecast method, and the 
alternative hydraulic control scenario, ICDAM2. 

 

 
Figure 26: “Up-time” for the three different forecast methods, and the ICDAM2 alternative control strategy 

The Hydrodynamic model (MIKE+ BASE) has been in operation in around 85% of the time 
during the DWC project. The ML has a relatively shorter, accumulated time in operation. 
Several challenges and constraints have caused interrupted operations, including fall-out of 
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radar data, forced software updates of MLOps, license issues, etc. These challenges have 
caused DHI to plan to re-engineer the implementation into a more robust IT environment, a 
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work that is planned to be executed before the end of 2022. This will allow a continued 
demonstration period until summer 2023.  

The KPI report illustrated below in Figure 27, shows the stats for KPI inflow forecast report, 
for the period 20/6/2021 to 20/10/2022, shown as numeric table as well as histograms. 

 

 
Figure 27: Stats for KPI inflow forecast report, for the period 20/6/2021 to 20/10/2022, shown as table and histogram. 
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Table 17 includes the following statistical parameters for a user specified period, from a 
comparison between forecasted and measured individual timeseries points, where positive 
values indicate that the forecasted value is above the subsequently measures value with the 
same timestamp: 1) Mean error, 2) Average of mean error negative, 3) Average of mean 
positive, 4) Average of Root Mean Square error, 5) Count of “MEnegative”, 6) Count of 
“MEpositive” and 7) Count of RMSE. The right side – the columns – shows the RMSE (up, 
positive values) and Average of “MEnegative” (down, negative values).  

 

Table 17: Root mean square error values [l/s] for the hydrodynamic model MIKE+, the ML model and STAR for forecast lead 
times between 30 and 120 min. 

Time (min)/Model MIKE+ BASE ML STAR 

30 1108 771 1033 

60 1114 776 1121 

90 1096 797 1173 

120 1120 807 1202 

 

The Root Mean Square error in Table 17 summarizes the “accuracy” of the forecasts compared 
to the subsequent measurements. While the results for MIKE+ BASE and STAR are on the same 
level, they have both a significantly higher RMSE, around 50% than the Machine Learning.  

This indicates that the machine learning in general has a better prediction score. 
Unfortunately, the active time for the ML is somewhat lower than for the other methods.  

Table 18 compares the RMSE for the two methods ML and STAR (existing forecast) for the 4 
different forecast horizons. As it can be seen, the relative improvement is between 25 and 33 
%, which is lower than the defined target KPI 1 of 35 % - 42 %. 

 

Table 18: Root mean square error values [l/s] for the ML model and STAR for forecast lead times between 30 and 120 min. KPI 
values for RMSE. KPI 1. 

Time (min)/Model ML STAR Accuracy increase 

30 771 1033 25% 

60 776 1121 31% 

90 797 1173 32% 

120 807 1202 33% 
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8.3.2. KPI 2: Accuracy of forecast time for wet and dry weather – up to 36 h 

The aim of accurate dry weather forecasts is to allow BIOFOS and the catchment utilities to 
empty the storage basins more dynamically and geographically flexible, all depending on 
where and when it rains.  

The forecast predictions and the comparison between forecasts and measurements are 
performed for five locations within the catchment, see Figure 28. For each location, a new 
forecast is produced on an hourly basis. The forecast is presented as a table, where minimum 
and maximum rain depths are listed for 12h, 24h and 36h ahead. The table is updated 4 times 
per 24h period. The forecast overview is shown in Figure 29. 

 

 
Figure 28: Rainfall depth forecasts for 5 locations within the treatment plant catchment. Forecast up to 36 h ahead. Each 
green square represents a rainfall measurement station. 

 

Result rainfall forecast: 

A separate report, shows the accuracy of the predictions, when compared with rain gauge 
data. For each of the five rain gauges, the 12-hour measured rain is matched (green columns) 
with the 12-hour NWP predictions (blue columns) at the same location. The user can zoom 
into different periods. The figure shows the period from 14. September to 12. October 2022.  
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Figure 29: Comparison of 12 h predicted and measured rain depth, per day, including accumulated “error”. Station name: 
Kongens Enghave. 

 For the specified period, the actual measurement over time shows higher values than the 
NWP predicted values. The same pattern or bias are seen as a general trend independent of 
the period. This issue has not been further investigated. 

 

Accuracy of forecast time for dry weather – 36 h  

For four of the five rainfall forecast locations, rain data were also available from rain gauges. 
The forecast accuracies show very similar results for all four stations, where the accuracy is in 
the range between 68% (36 h) and 88% (12 h). 

 

Table 19: Comparison between forecasted and measured rain. Count is the number of hours in the different categories. 

 0-12h 0-24h 0-36h 

Rain is forecasted 1861 2314 2518 

Dry period is forecasted 5258 4790 4577 

Correct dry forecast 4624 3678 3096 

Wrong dry forecast 634 1112 1481 

KPI as % of correct dry forecast 88% 77% 68% 
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8.3.3. KPI 3: Reduction of wrong automatic switching between dry and wet weather 
operation at the WWTP 

The KPI evaluates whether the new inflow forecast models are better than the existing 
operational inflow forecast model, thereby reducing the wrong switches between dry and wet 
weather operation at the plant. This is done by comparing current linear reservoir model 
(STAR) with the ML and MIKE+ BASE – hydrodynamic model, regarding wrong starts, missing 
starts and correct starts.  

Calculations are currently set up with lead times 30, 60, 90 and 120 minutes. Does an inflow 
forecast value exceed the threshold of 6,400 m³/h at the plant, once the switching from dry 
to wet weather operation (ATS- Aeration Tank Settling) is initiated. Other activation protocols 
include measured inflow at “Dæmningen”, a location upstream the WWTP in the catchment, 
exceeding 3,000 m³/h once. The ATS is de-activated and dry weather operation resumed when 
the measured inflow at the plant is ≤ 4,000 m³/h.  

The measured inflow to the WWTP in the period June 2021 to mid-October 2022 is shown in 
. 

 
Figure 30: Measured inflow to Damhusåens treatment plant from June 2021 to October 2022. The horizontal line indicates 
the threshold value for switching between dry and wet weather control, 6400 m3/h . 

Within the period, there has been around 300 starts of wet weather control, some of which 
have lasted for several days.  
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Definition of correct start (A) Correct warning: 

- Both the flow forecast activated wet weather operations (ATS-control) and measured 
inflow exceed the threshold of 6,400 m3/h during 2 times forecast lead times from the 
start of a forecast. If the actual measured flow exceedance occurs sooner than the 
forecasted exceedance, it is also considered a correct start.  

 

Definition of wrong start (B) – False warning, KPI 2:  

- The forecasted flow exceeds the threshold value of 6,400 m³/h (and triggers the change 
from dry weather to wet weather control) but the measured inflow at the plant did not 
exceed the threshold within a period of two times the forecast lead time from the start 
of a forecast. 

 
Definition of missing start (C) – Missed warning: 

- Measured inflow activated the wet weather control: The inflow exceeds 6,400 m3/h 
without wet weather operation (ATS-control) active or the flow at “Dæmningen” 
exceeded 3,000 m3/h, and neither of the prediction methods forecasted flows exceeding 
the threshold value. 

 

 shows the KPI report for the A/B/C values. It shows the number of occurrences for the 
different forecast lengths as well as relative accumulated A/B/C scores for the three different 
forecast methods: 

• MIKE+ model, also called HIFI model and hydrodynamic model 

• Machine learning – ML 

• Linear reservoir model, existing forecast - STAR 

 
Figure 31: The ABC KPI report, summing up numbers for correct warning, false warning and missing warning. The numbers 
are not directly comparable, as the prediction methods have not been in operation in the same accumulated time. 
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The sum of correct and false alarms (A+C) is at the same level for each method for the varying 
forecast lengths. The numbers for ML are significantly lower than for the hydrodynamic model 
and STAR, probably explained by the shorter time ML has been operational. 

 

 

 

Table 20: Sum of true and false alarms for the different forecast lengths. 

 30 min 60 min 90 min 120 min 

MIKE+ BASE 190 188 191 191 

ML 136 135 135 133 

STAR 169 187 193 196 

 

When looking into the reliability of high flow forecasts (exceeding the 6400 m3/h), there is a 
significant difference between the different forecast principles. 

The relative score for the three methods can be calculated: 

• MIKE+ BASE (11+15+19+19) / ((11+15+19+19) + (18+23+24+24)) = 41%,  

• ML = 61%  

• STAR = 31% 

or in words: 

For MIKE+ BASE the prediction is correct in 41% of the high flow forecasts, for ML it is 61% 
and for STAR it is 31%.  

When it comes to the number of missed high flow predictions (Type C), the ML has a slightly 
lower number, which may relate to the relatively shorter up-time.  

KPI 3: Reduction of wrong automatic switching between dry and wet weather operation at the 
WWTP. The total number of false starts for the existing STAR forecast and the ML are (Type 
B): 67+73+78+84=302 and 2+6+3+7=18. Although the false start count for STAR covers a 
longer up-time period than for ML, there is a significant improvement when it comes to 
reducing the number of false starts by using the ML. The ML seems to reduce the false start 
count with around 90% or more.  

 

Result summary, KPI #1, KPI #2, KPI #3: 

KPI 1: Inflow forecast 

The inflow predictions of the ML forecasts, expressed as RMSE, is around 30% better than the 
existing STAR and the hydrodynamic model results. With the challenges related to gaps in 
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continuous data supply for the ML routine, it is expected that the ML can perform even better 
with a stable and continuous supply of real time data from the catchment.  

KPI 2: Dry weather flow forecast 

The prediction of the dry weather for 12-24-36 h ahead, has an accuracy score of around 75-
80%.  

KPI 3: Reduction of wrong switches from dry- to wet-weather operation of the treatment plant 

The ML routine provides a significant improvement in the number of wrong switches, in the 
order of a 90% reduction.  

8.3.4. Other benefits 

There are several benefits of the modelling methodology. One benefit is a higher degree of 
automation in model building, rather than the physics-based approach which requires several 
intermediate parametrized models. For instance, in the case of using weather radar 
observations, the traditional model chain comprises the Marshall-Palmer relation for 
translating radar reflectivity to rain intensity, bias correction of radar rainfall using rain gauge 
data, rainfall-runoff modelling, and hydrodynamic modelling of the sewer system for flow 
prediction. The ML model uses weather radar data to predict a rain intensity category, which 
is used directly to predict flows without additional modelling steps. Another advantage is the 
speed at which forecasts can be made, which is on the order of seconds. Additionally, it is easy 
to train models for even longer lead times if desired. 

8.4. Return on experience 

Working with inflow prediction, we gathered experience from machine learning experiments 
as well as with setting up a running system. Our findings are described in the following. 

Data availability: Retrieving historical data from offline databases at utilities was a huge effort. 
Likewise, it took a long time to set up data flow to maintain an updated database in the cloud, 
necessary for retraining of the machine learning models and to make predictions as requested 
through the web service we set up. Sometimes data is not available from the utilities providing 
data, in which case predictions cannot be made. As a remedy, we have developed five 
different ML models, covering the combination of interrupted data source. All five models 
have been trained with historical data. If a data source is missing, the ML model that 
corresponds to the available input data is used. 

Reproducibility and result comparisons for ML models: We use an MLOps platform (software 
development environment) hosted in the cloud (we use Azure), which has turned out to be 
very useful in tuning and retraining machine learning models, versioning models, keeping 
track of models and training and evaluation results, and for model deployment. But the 
MLOps/Azure environment is at the same time relatively costly, and with frequent software 
updates, it requires significant maintenance. We have decided to migrate the trained ML 
routine to a different IT-environment, which offers slightly slower performance but a more 
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reliable, stable and less expensive framework. This work is scheduled for December 2022, and 
the project partners will extend the testing period for another six months in 2023.  

Another conclusion/recommendation is related to the hydrodynamic model. The model has a 
hotstart feature, that forces it to start from the previous simulation. This feature can be 
further enhanced, and it will especially during wet weather provide significant better results. 
Another possible improvement is to introduce the so-called data assimilation, there the 
hydraulic model is “forced” to use the latest measured flows as initial conditions.  

Practical implications and considerations for the future: BIOFOS consider ML as an alternative 
method to the existing STAR- linear reservoir model for predicting the inflow to the WWTP 
and usage in operations. ML shows promising forecasting results, and the potential to 
implement it at other locations (WWTP or CSO) and in a dynamic integrated control in the 
catchment, is high. BIOFOS will therefore allocate time in promoting the results within BIOFOS 
operations and the Integrated Wastewater Management Group for Greater Copenhagen with 
the aim to establish further innovation as well as real testing in operations.  

  



 

 

79 

9. DS12: Interoperable decision support system and real-time control algorithms for 
stormwater management 

9.1. Digital solution 

DS12 “Interoperable Decision Support System (DSS) and real-time control algorithms for 
stormwater management” aims to support the sewer system- and WWTP operators to choose 
the best control strategy to minimize pollutant loads based on a comparison of inflow 
forecasts (DS11) and control strategies. The aim of the demonstration is also to build 
awareness and confidence across operators to trust on a DSS based on model results.  

The Decision Support System (DSS) addresses two different control strategies in the network 
as well as executing the ML model matching the input data availability. The aim to look into 
two control strategies is to evaluate the potential to optimize the utilization of relevant 
retention capacities in the system, thereby minimizing bypass at the WWTP and saving CAPEX 
investment costs for a retention basin at the WWTP to obtain the same benefit.  

Two different model types are used in the project to obtain results and evaluate benefits. The 
ML models described in the previous section and the HIFI model, also called hydrodynamic 
model and MIKE+. The HIFI model is a calibrated hydrodynamic model, describing the detailed 
flows and levels throughout the pipe network. The HIFI model is configured to execute two 
different pre-defined control strategies. One being the default control setting (MIKE+ BASE) 
the other an alternative control strategy (MIKE+ ICDAM2), which aims to optimize the 
management of in-sewer retention capacity and emptying of retention basins. The output of 
the HIFI model and the two control scenarios are very similar: inflow forecasts to the 
treatment plant, but only looking 2 hours ahead as compared to the  
3-hour ahead forecasts from the ML models, due to performance restraints. 

DS12 is a software component that integrates DS11 and DS13. DS12 enables simulations of 
different scenarios, compiles and manages results and KPIs to be visualized in DS13. User 
interaction with the DSS takes place in the web interface (DS13).  

9.2. Demo description 

The DSS has been set up and tested for the Damhusåen study site in Copenhagen. The 
demonstration includes a comparison of inflow forecasts and control strategies. Simulated 
real-time tests are carried out using radar data to produce deterministic inflow forecasts for 
screening and evaluating real-time control algorithms for WWTP operations and management 
of retention capacity in the catchment.  

Control scenarios: 

The utility HOFOR, an associated partner in the project, has recently constructed two big 
storage tunnels along a river called Damhusåen. To further enhance the utilization of one of 
the tunnels (29,000 m³) and thereby reducing bypass at the WWTP, an alternative control 
strategy is set up in the HIFI-model called MIKE+ ICDAM2. The new strategy implies the 
insertion of a sluice gate between the existing gravity pipes and the tunnel. During rain events 
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the gate will make it possible to force water into the tunnel earlier than it is possible today. 
The controls between the inflow to the WWTP and the gate are set in such a way, that water 
is forced into the tunnel at inflow rates of above 8,000 m3/hour at the plant as long as the 
level in the tunnel does not exceed a certain set-point, assuring that the alternative control 
strategy does not conflict with other strategies in the catchment and/ or provoking a CSO to 
the local creek. The maximum biological capacity at the WWTP is 10,000 m3/hour, which 
means that all inflow exceeding that threshold bypasses the biological treatment at the WWTP 
and is only treated mechanically. 

Today water enters the tunnel through internal overflow structures from the gravity pipes 
when the capacity in the gravitational pipes is fully used. The benefit of redirecting the water 
earlier is, that the inflow to the WWTP via the gravitational pipes can be reduced. Even though 
it will be necessary to run long term simulation to reveal the real potential of the suggested 
control scenario, the demonstration of saved bypass volumes and reduced nutrition loads, 
coupled with the results on long-time weather forecast will bring us a considerable step 
further in the process of optimizing real-time control of existing infrastructure.  

9.3. Assessment of the digital solution 

The benefits of the solution have been assessed via three defined key performance indicators 
(KPI). The two HIFI-models are running online simultaneously since the 01.07.2022. Data 
included in the assessment and discussion includes the period 01.07.2022- 29.10.2022.   

Because of the relatively short period of evaluation and the initial intention to calculate annual 
reductions of by- pass volume, nitrogen emissions and CAPEX cost- savings, BIOFOS has 
decided to also include calculations of the KPIs for a practical, real-life example. BIOFOS and 
HOFOR (utility) have implemented an integrated control strategy (ICDAM1) in June 2020, 
where the effects and benefits are monitored and evaluated continuously.   

This means that this section will include KPI calculations for: 

• Inflow forecast results (30min) of the two HIFI-models, MIKE+ BASE and MIKE+ 
ICDAM2 in the period 01.07.2022- 29.10.2022. 

• Measured data of the implemented control strategy between BIOFOS and HOFOR- 
ICDAM1.  

The results are summarised in Table 21. Details on considered input data as well as 
calculations are given in the subsections below.  

Table 21: Overview table of KPI assessment  

KPI Short description Quantification 

Reduction of by-pass 

volume [m³]  

The aim of the KPI is to calculate the 

absolute reduction of the annual 

volume of only mechanically treated 

combined sewage (bypass) at the 

WWTP discharging into marine 

Bypass reduction with ICDAM2 

compared to the base scenario = 

25.000 m3.  
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KPI Short description Quantification 

waters by comparing the alternative 

control strategy with a base scenario.  

 

Bypass reduction regarding ICDAM2 

and the current practice is calculated 

as total and per month for the period 

01.07.2022- 29.10.2022. 

 

Annual reductions are calculated for 

the already implemented control 

strategy ICDAM1. 

 

Annual bypass reduction with ICDAM1 

= 820.000m3 equal to a 25% saving.  

Reduction of nitrogen (N) 

emissions [tons], [%] 

The aim of the KPI is to calculate the 

reduction of nitrogen emissions to 

the recipients with the alternative 

control scenario in the catchment 

and the advanced integrated control 

between WWTP and sewer network 

operator. This includes CSO volumes 

along the river and connected to the 

storage tunnel.  

Reduction in nitrogen (N) with ICDAM2 

is 0,4 tons or 7% compared to the base 

scenario.  

In 2021 the reduction of nitrogen (N) 

emissions achieved by ICDAM1 were 

13 tons. This corresponds to a saving 

of 19% compared to no control 

strategy.  

CAPEX reduction for 

constructions to reduce 

bypass  

The idea with the KPI is to calculate 

the investment cost for constructing 

storage volume at the WWTP 

equivalent to the obtained effect 

with the new control scenario 

established in DWC, based on model 

results. 

 

Since simulation do not really mimic 

reality, this KPI is illustrated 

theoretically and calculated for 

ICDAM1.  

CAPEX savings with ICDAM1 are 

approx. 75mio.EUR. 

 

9.3.1. KPI 1: Reduction of by-pass volume [m³] 

The KPI calculates the absolute reduction of the volume of only mechanically treated 
combined sewage (bypass) at the WWTP discharging into marine waters by comparing the 
alternative control strategy with a base scenario (current practice). By-pass occurs when the 
inflow exceeds 10,000 m3/ hour. 

 

1. Reduction of by-pass volume [m3] based on forecast data (30 min) for MIKE+ Base and 
MIKE+ICDAM2 during the period 01.07.2022- 29.10.2022 
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During the period 01.07.2022- 29.10.2022 the simulated bypass volume by MIKE+Base and 
MIKE+ICDAM2 was 276,000 m3 and 251,000 m3 respectively. This means that the alternative 
scenario saved the environment for a total of 25.000 m3of bypass.  

However, is the simulated inflow to the WWTP considerable overestimated and measured 
bypass volume at the WWTP is only 172,000 m3 during the same period. It must unfortunately 
also be stated that, besides magnitudes of bypass volume, the simulated events do not 
necessarily lie at the same point in time.  

There are several possible explanations for that: one is that the forecast is based on radar data 
and therefor estimated rainfall, which often can be very different to the finally measured 
rainfall. Another explanation is that the model’s catchment/ runoff description as well as the 
control strategy itself are insufficiently described and/ or with errors. 

Table 22 shows the total calculated bypass flow per month for MIKE+ Base, MIKE+ ICDAM2 
and measured bypass at the WWTP.  

Table 22. Calculated bypass flow per month for MIKE+ Base, MIKE+ ICDAM2 and measured bypass at the WWTP. 

 Calculated bypass volume [m3] 

 MIKE+Base MIKE+ICDAM2 Measured 

July 80,260 69,802 13,282 

August 179,569 144,455 29,918 

September 7,403 14,589 121,285 

October 8,435 21,819 8,503 

TOTAL 275,668 250,665 172,998 

 

As can be seen in the table, differences between simulated and measured bypass are 
significant and the results are therefore only of limited use regarding benefit evaluation. 
Regarding the opposite effect for ICDAM2 in September and October, a closer look into the 
data shows that the model simulates unrealistic single datapoints, which are the reason for 
the opposite results in September and October between the scenarios.  

 

2. Reduction of annual bypass demonstrated with the integrated control strategy 
ICADM1  

BIOFOS still believes that the alternative control scenario, when simulated correctly, would 
reduce the volume of bypass at the WWTP. To illustrate the huge effect which can be obtained 
by optimizing the system, annual bypass savings obtained with another integrated control 
strategy, implemented between catchment and WWTP (BIOFOS and HOFOR) is presented 
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here. Effects and benefits are monitored and evaluated constantly via measurement data and 
calculations.  

In 2021 ICDAM1 resulted in a reduction of 820.000 m3 in bypass, which represents a saving of 
25% of the total bypass emitted. BIOFOS registered a total bypass volume of ca. 2,358,000 m3, 
while it would have been 3,178,000 m3 without the integrated control strategy ICDAM1.  

 

9.3.2. KPI 2: Reduction of nitrogen (N) emission 

The aim of the KPI is to calculate the reduction of nitrogen emissions to the recipients with 
the alternative control scenario in the catchment and AIC (Advanced Integrated Control) 
between WWTP and utility. Nitrogen is the primary concern, and hence chosen as KPI, as 
BIOFOS has to reduce nitrogen emissions with 200 tons/year to comply with the EU-Water 
Framework Directive. BIOFOS complies with phosphorous emissions. Therefor simulation 
results of both saved bypass in the storage basin and volumes at CSO are included in the KPI. 
To be able to compare the effect of the alternative control strategy, the same results are 
stored in the baseline simulations running simultaneously.  

A part of the KPI is the water balance accounting for the difference in bypass volume due to 
reduced inflow to the plant during a rain event. Reduction of nitrogen emissions are calculated 
as percent reduction and totals in tons.  

𝐾𝑃𝐼 2 [%] =
(𝑁𝑜𝑙𝑑 − 𝑁𝑛𝑒𝑤)

𝑁𝑜𝑙𝑑
 𝑥 100 

Where N stands for nitrogen, the subscript old refers to the initial control strategy, while new 
refers to the integrated control strategy, where the usage of basin volume is optimized 
regarding the biological treatment capacity at the WWTP without compromising CSO.  

Using the results from the section above, the difference in total N between the two scenarios 
within the 4 months is 7% or 0,4 tons. However, since the model and input set-up have to be 
revised, this result is not representative.  

Regarding the reduction of nitrogen emissions with ICDAM1 in 2021, BIOFOS saved 19% N 
emissions, or 13 tons N compared to no control strategy. Regarding the mentioned 
requirement of reducing nitrogen emissions with 200 tons N/ year, ca. 7% is delivered by this 
integrated control strategy. In the next section this volume is used in the CAPEX saving 
calculation.  

9.3.3. KPI 3: CAPEX reduction for constructions to reduce bypass 

The idea of evaluating whether the alternative control strategy is cost-effective by calculating 
the investment cost for constructing storage volume at the WWTP equivalent to the obtained 
effect with the alternative control scenario is illustrated by ICDAM1, since simulation results 
are not reflecting reality good enough to estimate cost-savings.  
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Figure 32Fehler! Verweisquelle konnte nicht gefunden werden. below shows the relationship 
between storage volume and bypass reduction. Input data for the calculations was measured 
inflow to the WWTP Damhusåen during 2020 and a biological treatment capacity of 10,000 
m³/time. The year 2020 had an annual precipitation of 613mm, which represents a normal 
precipitation year.  

To obtain a reduction of bypass volume of 820.000 m3 per year and thereby achieve the same 
environmental benefit as with the implemented control strategy ICDAM1, a storage volume 
of 30.000 m3 is necessary.  

With an actual price of approx. 2,500 EUR per m3 storage volume, BIOFOS would need to 
invest around 75mio. EUR to obtain the same effect.  

See Figure 33 or the relationship between storage volume, bypass reduction and costs.  

 

 

 
Figure 32: Relationship between bypass reduction and basin volume. For example, to achieve a reduction of 830,000 m³ in 
bypass per year, you would need a storage basin volume at the WWTP Damhusåen of 30,000 m³. 
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Figure 33: Relationship between bypass reduction, necessary storage volume and storage volume costs for the WWTP 
Damhusåen. 

 

9.4. Return on experience 

Performance quality of the forecast models had to be assessed and ensured at multiple stages 
i.e. before as well as after operationalization. For example, prior to operationalization, 
multiple ‘offline’ checks on the HIFI model had to be performed using historical events to make 
sure it can realistically simulate inflows to the wastewater treatment plant during dry- as well 
as wet-weather days. Then, forecast performance after operationalization (i.e., online) was 
also necessary as the system has other components in addition to the HIFI model, such as 
input pre-processing routines used before each forecast run, or other external components, 
such as radar rainfall forecasts that are used as input to the model. If the operational forecast 
of inflow to the wastewater treatment plant is deemed poor compared to measurements, 
several aspects of the operational system and not just the HIFI model itself, need to be 
revisited and adjusted. Aside from possible limitations of the HIFI model in, e.g., simulating 
particular types of wet-weather events, the problem could also be due to bugs in input pre-
processing scripts, or even inherent poor quality of the rainfall radar forecasts used as input 
to the operational model, and the possibilities for making corrections / adjustments vary 
among these components. 

Moreover, evaluation of the operational system forecasts depends on the occurrence of wet-
weather events over which they could be performed. Wastewater inflows during rain events 
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are of main interest in the project, and thus, more complete checks on operational model 
performance could only be made upon availability of wet-weather rainfall input and inflow 
measurements during rainy periods. 

Regarding development and implementation of control scenarios, we needed to consider not 
just technical viability of options (i.e., in the model setup), but also practical considerations, 
such as if these control options could be implemented in real life. For example, the HIFI model 
is built using software that allows addition of numerous options for storage or evacuation of 
water from the sewer system, e.g., via addition of new structures such as pumps or gates, or 
of control rules to existing controllable devices described in the model. However, the types 
and locations of control options introduced to the operational model first had to be deemed 
viable for actual implementation by the utility company. It was important to ensure that the 
control scenarios implemented in the operational system were practicable in real life, and this 
imposed additional limits to the options that could be implemented / tested in the operational 
system. 

Practical implications and considerations for the future: 

To be able to use the HIFI-models as decision support tool, some improvements are suggested. 
The model needs an updated re-calibration using the radar data as rain data source. The 
model has only been calibrated on basis of ground-based rain gauges. Another suggestion, 
that will enhance not least the forecast accuracy, is to implement a so-called Data Assimilation 
(DA) procedure. DA is a recognised method for improving model forecast results for most 
mathematical models. In short, the DA method forces the prediction to assume the current 
situation (now) as initial condition before looking into the future. Besides, more offline 
simulations and result analysis regarding alternative scenarios must be performed before 
Operations will be willing to use forecasted effects of changed controls. 

A detailed model analyses is outside the scope of this project, but BIOFOS will address the 
model challenges together with the utilities since these models are used for planning control 
strategies and investments in the catchment. 
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10. DS13: Web-platform for integrated sewer and wastewater treatment plant control 

10.1. Digital solution 

The solution DS13 (“Web-based prototype platform for decision support at city scale”) is a 
web platform, enabling implementation, execution, and visualization of DS11 and DS12. It 
provides a full overview of key data and processes to all involved share- and stakeholders10. 
Shareholder interest spans from simply overview to important information in the operator’s 
decision-making process. Typical users for the platform will be planners, operators and middle 
management regarding KPI reporting. The platform includes both a GIS-like overview, with 
selected timeseries and an associated dashboard with key data, e.g., on rainfall predictions, 
associated uncertainties, hydraulic capacity of sewer pipes and storage tanks as well as the 
status of treatment processes. The solution fosters stakeholder engagement and rational 
decision making based on real-time data, accurate modelling, and scenario analyses. 
Important in this context is the goal, that all shareholders can download the processed data 
and integrate them in their own control strategies based on the same data sources. Figure 34 
shows a screen capture of the entry web page, showing key sensors in the greater Copenhagen 
area. The web app offers further drill down, for visualization of monitored data, inflow 
predictions as illustrated in Figure 35 and Figure 36.  

 

 
Figure 34: Screen capture of entry page for DS13. Map overview with dynamic links to all sensor stations 

                                                      

10 Share- and stakeholders are BIOFOS and the 7 utilities in the catchment.  
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10.2. Demo description 

The solution DS13 provides detailed information on the actual monitored flows and levels in 
the catchment. The solution is embedded into a web-platform, Future City Flow (FCF), that 
has been tailored to manage and present flow data, FCF includes special features for real-time 
and long-term planning. FCF offers three different modules: 

1. Time series storage. Repository for flows, levels, rainfall info. Data can be displayed, 
aggregated, exported and several other functions. 

2. Real-time. Comparison of live scenarios including forecasts. 
3. Planning. Long term rehab planning including financial optimization. 

DS13 makes use of the two first modules of FCF, which in turn has been further enhanced to 
include the DWC requirements, like larger flexibility for showing different forecast methods 

Separate views present timeseries up to the latest monitored values. Further, the tool allows 
for comparison of individual timeseries and exports. In the Real-time part of the DS13, the 
calculated inflow predictions are shown as 3-hours forecast. Four different forecasts can be 
displayed individually or jointly: machine learning forecast based on radar data and two HIFI 
forecasts, one for the base conditions and one for a predefined active control scheme for the 
alternative scenario (ICDAM2). Finally, the existing forecast system STAR is also included. The 
short-term flow forecasts are intended to be used by the operator to decide when to switch 
between dry and weather treatment control. The DS13 also includes a 36-h early warning of 
rainfall, as discussed and demonstrated in Section 10.3.2. Based on updated data from the 
Met-office’s numerical weather predictions model, selected data are retrieved and 
consolidated into simple statistical views showing the risk of rain at different locations in the 
catchment. The long-term outlook is used to guide for emptying of larger retention basins or 
for planning of maintenance work (flushing pipes, replacing pumps and similar). Finally, the 
DS13 also includes presentations of the KPI’s, some of which are calculated in real-time as 
temporal variables, see Section 10.3.3. The KPI reports are configured in Power-BI. 
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Figure 35: Screenshot of a simulated inflow forecast. The dotted purple line shows the measurements, and the thin full purple 
line is the 90 min forecast value from the hydrodynamic model 

 

Figure 36: Screenshot of a simulated inflow forecast. The dotted purple line shows the measurements, and the thin full purple 
line is the 90 min forecast value from the star forecast. 

  

Comparing the two figures above (Figure 35 and Figure 36), both the hydrodynamic model 
and the STAR model is able to forecast an increase in the flow in advance. The STAR model 
overestimates the flow peak, whereas the peak predicted by the hydrodynamic model fits 
almost perfectly. Unfortunately, the ML forecast was not operational at that moment.  

Figure 37 shows an example of the ML forecast compared with the measurements. Note that 
the data is from a different period than the data in the previous figure. 
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Figure 37: screen capture of a simulated inflow ml forecast. The four plots show how the forecast changes over time, from 
120 min to 30 min. The blue curve is the latest actual forecast, the other curves show measured values (dotted line) and the 
forecast history for the different forecast periods. 
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It can be clearly seen that the shorter the forecast period, the better the predictions.  

10.3. Assessment of the digital solution 

The benefits of the solution have been partly assessed via of the defined KPIs. The results are 
summarised in Table 23. Details on considered input data as well as calculations are given in 
the subsections below, where especially the section on return of experience gives a good 
overview over the benefits of the digital solution.  

Table 23: Overview table of KPI assessment (to be completed) 

KPI Short description Quantification 

Increased usage, utility 

buy-in  

There will be organized two 

workshops with relevant employees 

of the WWTP and staff of the 

stakeholder utilities in the 

catchment. Rate of workshop 

participation and reported 

willingness to use DS13 is evaluated. 

80% of the 7 utilities are participating 

in workshops. – achieved.  

There are registered users from 80% of 

the utilities. – Not able to assess, since 

the platform first will be presented to 

the stakeholders in January 2023.  

At least 2 users will use the system on a 

daily basis, and at least 50% on a 

monthly basis. - Not able to assess, 

since the platform first will be 

presented to the stakeholders in 

January 2023.  

 

Dashboards used by top 

management  

The aim is that relevant (top-) 

managers (for example department 

chiefs) will use the created 

dashboards showing KPI indicators 

developed under DS11 and DS12.  

A useability test will be conducted 

with members of management. -

Expected in Q2/ Q3 2023. – After 

having used the system for some time.  

Co- creation on functional 

design such as colors 

changing depending on 

remaining capacity in the 

system, icons etc.  

Design workshops held with the 

Local Community of Practice 

(utilities) to enhance acceptance and 

up-take of the web-platform. This 

included discussions on icons, colors, 

possibilities of selection of time 

series, viewer for rain statistics etc. 

1 workshop- Completed.  

 

10.3.1. KPI 1: Increased usage, utility buy-in 

To increase the usage and utility by-in, there will be organized two workshops with relevant 
employees of the WWTP and staff of the stakeholder utilities in the catchment. One workshop 
was held the 04.02.2021 with the assistance of “Icatalist” using an adapted version of a 
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method known as the “pentagonal problem” as a basis for collecting feedback and 
expectations.  

Key take-aways are, that the system must be easy to access and have an intuitive interface, 
show a high performance, and that all data is available for download. Of special use for the 
community is processed data such as rain statistics and visualized rain forecast, as well as that 
the system serves as data repository for data of the whole catchment. The group thinks that 
the system gives water utilities and planners the overview of actual and historical data over 
the catchment and thereby will facilitate a better use of assets across the catchment. One of 
the main benefits for BIOFOS’ stakeholders is that the tool creates a general catchment 
awareness and can improve the communication between the utilities, to the authorities and 
the public. It has also been clear that a buy-in of the utilities to use the system highly depends 
on whether the system offers additional value to their own SCADA system.  

11 of the 13 invited staff members were attending the workshop. One utility was not attending 
but input was collected via email by sending the questionnaire used during the workshop. The 
feedback of the utilities was implemented into FCF with special focus on increased 
performance and system usability.  

The increased usage of the system with the following KPI quantification:  

• There are registered users from 80% of the utilities. 50% of registered users are active 
every month.  

• At least 2 users will use the system on a daily basis, and at least 50% on a monthly 
basis. 

could not be assessed within the project period. The reason is that the stakeholders do not 
yet have access to the system due to the following reasons: 

• BIOFOS decided to migrate all data and calculations/ functionalities from the existing 
visualization platform SAMDUS to FCF, and not only the solutions developed in DWC. 
This process is first completed in December 2022.  

• The stakeholders have been informed about the progress and achievements for the 
new platform constantly at the meetings of the ‘Integrated Wastewater Management 
Group Greater Copenhagen’. BIOFOS has though decided to first launch and give 
access to FCF when all functionalities are implemented, since the success rate for buy-
in depends on that. A full functioning platform is crucial due to the fact that the 
SAMDUS visualization platform only had limited success due to performance and 
visualization constraints and the utilities lost interest in the system eventhough they 
have been part in developing it.  

• To achieve a successful launch and buy- in, a 4 hours workshop is scheduled in January 
2023, where DHI and BIOFOS go through FCF in detail including the forecasts and KPI- 
reports developed in DWC.  
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10.3.2. KPI 2: Dashboards used by (top-) management 

The idea with the KPI is to evaluate usability and value for (top-) management of the 
dashboards elaborated in DS11 and DS12. While the KPI originally was defined as “number of 
monthly active users” measured by tracking user behavior on the web platform, we have 
changed the approach to a KPI based on usability for (top-) management, to achieve 
engagement with the stakeholders at management level and buy in to the solutions 
developed.  

The approach for the new KPI is consisting of conducting a usability test with selected 
members of management. Usability testing is the practice of testing how easy a design is to 
use with a group of representative users and to find out if, how, when and why they will 
leverage the information shown in the dashboard.  

In the project the target management group for the dashboards are namely head of 
environmental department in BIOFOS, head of planning department in BIOFOS, head of 
operations in BIOFOS and chief consultant on Integrated Water Management in the associate 
partner HOFOR. 

We were not able to conduct the usability test for the Dashboards developed in DWC, since 
the work on the reports has only recently been completed and the FCF platform is not 
launched within the organizations yet.  

The usability test will be conducted in Q2/ Q3 2023, after the system has been used for a 
while, to understand whether it is worth generating and maintaining the developed Power- BI 
dashboards. As mentioned above, has BIOFOS migrated all data and functionalities from 
SAMDUS to FCF and needs to evaluate its return on investment.  

10.3.3. KPI 3: Co- creation on functional design 

The objective with a co-creation workshop on functional design is to enhance acceptance and 
up-take of the web-platform from the LCoP (Local Community of Practice). The requirement 
for the workshop was that at least one relevant employee per utility takes part in the co- 
creation workshop.  

We covered topics, such as icons, colours etc. in the workshop under KP1. The workshop has 
been held 04.02.2021 with the assistance of “Icatalist” using an adapted version of a method 
known as the “pentagonal problem” as a basis for collecting feedback and expectations.  

The KPI requirement of attendance of one member per utility in the workshop was not met, 
since one utility was not able to participate. Feedback was therefore collected by a meeting 
held between BIOFOS and the specific utility staff members of the utility.  

The feedback from the utilities was considered throughout the development of functionalities 
within FCF, for example the display of the WWTP and effluent concentrations, see Figure 38. 
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Figure 38: Sketch of the WWTP Damhusåen with its treatment steps and effluent concentrations. You can either select 
parameters directly in the sketch or at the item menu on the left hand. Timeseries are then displayed together. All graphs have 
zoom-in options. 

Special focus was put into the performance of the system in fast displaying data, which was 
one of the main issues in SAMDUS. This issue has been successfully resolved.  

10.4. Return on experience 

Data communication:  

The solution uses two-way communication.  

• Data communication from utility to DWC platform: The solution collects data from both 
online sensors and gauges as well as data from SCADA systems/historian and weather 
data. The complete collection of flow-, level-, and volume sensor data, data from rain 
gauges and weather forecast data is complex as sources, communication protocols and 
format vary. As data is communicated via different sources and different protocols, the 
plan was to utilize communication standards to minimize development overhead. 
However, being flexible in handling data was determined to be a better approach, as no 
such standard exists. 
 

• Data communication from DWC platform to utility: The DWC platform is designed to ship 
time series back to the utility’s SCADA/historian either by the user manually downloading 
the selected time series in various formats or by automatic scheduling. This makes it also 
possible for the utilities to create relevant reports with data outside their own SCADA 
system.  

Data acquisition:  
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Retrieving historical data from offline databases at utilities was a huge effort. Likewise, it took 
a long time to set up data flow to maintain an updated database in the cloud. Handling big 
collections of data in real-time or near real-time stresses the performance of the queries when 
multiple users are using the system and the flow predictions are run. For that reason, there is 
still ongoing performance testing being carried out.  

Visualization:  
The FCF platform has clearly a convincing modern and intuitive visualization interface and 
thereby is a substantial improvement to the existing SAMDUS platform. The functionalities 
regarding rainfall statistics, ability to display a multiple of timeseries, dynamic, interactive, and 
fast zoom- in possibilities etc. are easy to access and understand. The limitations within FCF 
of not being able to choose icons, colors etc. as will be addressed in the further development.  

Performance: 
The performance/ speed to display data in FCF has been tested and evaluated a multiple of 
times and has surpassed BIOFOS expectations. This will thereby help to launch the platform 
successfully within and outside BIOFOS.  

Access of external links: 
FCF will not only be a visualization platform where greater Copenhagen’s utilities can access 
each other’s data but will be the platform used to communicate and share information 
between them. This is made possible by being able to access external links via FCF. For 
example, BI- reports generated within the utilities, online-tools developed with another 
supplier, relevant documents and project descriptions etc. The idea is to have ONE place to 
login and not multiple places and ONE place to access relevant information. This will make the 
exchange of information between the utilities more robust since we will look at the same 
information  
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11. DS5.1: Active Unmanned Aerial Vehicle for the analysis of irrigation efficiency 

11.1. Digital solution 

The efficient and sustainable use of water for irrigation has become a core requirement in 
modern agriculture, especially in warm countries, where droughts and water stress are an 
issue, and in densely populated areas, where competition among water uses is on the rise. To 
facilitate this, a new method for the remote detection of water stress with an active 
Unmanned Aerial Vehicle (UAV) and multi-spectral imagery has been developed. The digital 
solution enables the mapping of stress conditions that is a spatially distributed phenomenon. 
The solution consists of the following components: 

• UAV with mounted multi-spectral camera (i.e., Micasense Altum11); 

• satellite data (Sentinel-2 and PlanetScope) provided by external providers (i.e., 
Sentinel-hub and Planet); 

• a set of ground sensors, e.g., for measuring the volumetric water content of the soil; 

• a weather station; 

• irrigation systems. 

UAV data are used to evaluate the crop status (nutrient and water stress) using multi-spectral 
data. Considering the flight costs, as well as potential restrictions (e.g., you need an 
authorization to fly in restricted areas), this kind of data have low temporal resolution but 
ultra-high spatial resolution (2-4 cm). 

Satellite data are useful to evaluate the behavior of crops over a season. We use Planet and 
Sentinel-2 images to set-up time-series to evaluate the nutrient and water stress of crops. In 
this case, the temporal resolution with low cloud coverage is good (1 or 5 days), but the spatial 
resolution ranges from 3 to 20 m. 

The ground sensor data is used to validate the water stress data derived from UAV and 
satellite data. Further, they are used as input data for agro-hydrological modelling, which 
simulates the dynamics of soil water content under different weather and irrigation 
conditions, accounting for crop development and root water uptake. The modelling allows to 
evaluate timing of irrigation and water volume required to satisfy the water demand of crop, 
information which is used as input for the Match Making Tool (DS5.2, section 12). 

The weather station enables the calculation of evo-transpiration that is a relevant variable to 
identify the water need in a given time. The value of evo-transpiration could be used to predict 
potential water stress conditions that could occur between irrigation sessions.  

Irrigation systems of course play a key-role. On the one hand, with border irrigation (low 
efficiency), it is important to schedule irrigation events providing the right quantity of water. 
On the other hand, with drip irrigation, thanks to its higher efficiency, it is possible to reduce 
the water footprint of the irrigation practice. Moreover, if the water is obtained from a Waste 

                                                      

11 Micasense Altum - https://micasense.com/altum/ (last access Nov 2022) 

https://micasense.com/altum/
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Water Treatment Plant (WWTP), fertigation with the nutrients contained in the irrigation 
water represents an additional advantage. 

The digital solution endeavors to demonstrate the importance of data integration to make 
informed decisions and optimize the use of water, while reducing nutrient and water stresses. 

11.2. Demo description 

The digital solution has been demonstrated at the WWTP of Peschiera Borromeo, located in 
the eastern part of the Metropolitan City of Milan, Italy. The WWTP is surrounded by an 
agrarian context typical of the Lombardy Padana Plain, mainly cultivated with fodder crops 
(especially maize) and irrigated using traditional techniques, mainly border irrigation. 

The demo site consists of a field which is 3.8 ha in size and is adjacent to the WWTP providing 
water for irrigation. The field was cropped with maize during the summer season, while during 
the previous autumn and winter, mustard was cultivated as cover crop. Maize was sown at 
the beginning of April 2021, and harvesting was carried out at the end of September 2021. 

We executed two flights (respectively on the 5th and 26th of August 2021) that have been 
authorized with specific NOtification TO AirMan (NOTAM) from the Italian Civil Aviation 
Authority (ENAC). The NOTAM was required considering that the demo area is located within 
a red area (highest risk) where UAV are not authorized to fly at any level above the ground. 
Processed data have ground sampling distances (GSDs) that vary from 3 to 4 cm. Flights were 
performed in a time window that was decided by ENAC (not under our control - 06:30-08:30 
UTC) and it was not ideal due to the sun (low) elevation. Data were acquired with a lateral and 
longitudinal overlap of 80% at an authorized height of 25 m above the ground level due to 
airspace restrictions. Radiometrically calibrated orthophotos were processed using a 
processing pipeline inside the Agisoft Metashape Professional software. The raw and 
processed data are safely stored in a dedicated bucked on the Amazon Web Service (AWS) 
Simple Storage System (S3). Figure 39 shows the UAV set-up (drone and calibration target that 
is needed to have reflectance values). Further details on the solution and its technical 
specifications can be found in DWC-D2.4 (Technology report). 
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Figure 39: Left: Unmanned Aerial Vehicle on the demo area ; center: reflectance calibration target adopted to calibrate data; 
right: index map that reflects the crop status according to the Normalized Difference Red Edge (NDRE) Index. 

 Satellite data was acquired from PlanetScope and Sentinel-2 satellites to monitor the crop 
status. Regarding the Sentinel-2 images we processed Level-2A product. This kind of product 
provides Bottom of Atmosphere (BOA) reflectance images derived from the associated Level-
1C products12. L2A images were processed using the Application Programming Interfaces 
(APIs) provided by the SentinelHub service13 and stored on S3. 

To obtain information about the soil water status and quality, the following ground sensors 
and devices were installed in the field:  

• Two multilevel humidity probes, located at two points along the drippers line, which 
can measure the volumetric water content in the soil every 10 cm from 5 to 55 cm of 
depth. The probes are equipped with a modem and the data can be accessed from the 
cloud (Sentek Drill&Drop14). 

• A piezometric well with a sensor to monitor the ground table depth. 

Data from ground sensors (also including weather station) are stored on the cloud of service 
provider and a copy is also stored on the S3. The monitoring data from the ground sensors are 
used to validate the water stress measurements derived from UAV / satellites. In this case we 
consider for remotely sensed data a buffer of 10 m around the probe, and we extract the 
mean and mode values. These are then compared with the mean and mode values of the 
probes in a temporal window [t0 -T, t0] where t0 refers to the acquisition time of the satellite 
/ drone. In addition, a weather station [ATMOS41, METER ENV.15] was installed near the demo 

                                                      

12 Sentinel-2 Product Specifications https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-
Document (last access Nov 2022) 
13 SentinelHub API - https://www.sentinel-hub.com/develop/api/ (last access Nov 2022) 
14 Sentek Drill & Drop - https://sentektechnologies.com/product-range/soil-data-probes/drill-drop/ (last access Nov 2022) 
15 Meter Environment ATMOS 41 https://www.metergroup.com/environment/products/atmos-41-weather-station/ (last 
access Nov 2022) 

https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
https://www.sentinel-hub.com/develop/api/
https://sentektechnologies.com/product-range/soil-data-probes/drill-drop/
https://www.metergroup.com/environment/products/atmos-41-weather-station/


 

 

99 

site to measure the local weather agrometeorological variables required to estimate crop 
evapotranspiration; for security reasons the station was installed inside the WWTP, about 500 
m from the field. These data are available through API. These data were used to understand 
the need of water at a given time / crop development stage; this information could be used 
to select the best period to acquire data using drones and -where possible- satellites. 

Traditionally, the field has been irrigated using border irrigation, with a centrifugal pump that 
lifts the water from a canal and conveys it to the field. In the 2021 season, a drip irrigation 
system was installed on one half of the site. The main pipe of the drip irrigation system starts 
from the outlet of the WWTP Line 2 and reaches the boundary of the field where a manifold 
is connected. The irrigation system is divided into four different sectors, which are activated 
through four electro-valves. Each sector was irrigated for 12 hours every 2 days during the 
agricultural season. Laterals connected to the manifold were installed in the crop inter-row 
just before the beginning of the season, with a spacing of 1.4 m and were partially buried; the 
emitters’ distance and discharge are respectively 30 cm and 1.14 l/h, thus providing an 
irrigation intensity of 2.7 mm/h. Figure 40 shows the demo site and main related components. 

     

 

   

Figure 40: Overview of demo site (left), drip irrigation system installation (center), piezometer, water content probe + GSM 
modem, porous cups (right). 

The field located immediately in the south of the experimental one was monitored and used 
as benchmark for the following DS (DS5.2 Match-Making Tool). It is approximately 8.5 ha in 
size, cultivated with maize and watered with border irrigation using a centrifugal pump 
powered by a tractor. Irrigation is scheduled according to a fifteen-day conventional rotation 
imposed by the irrigation consortium. Irrigation events were monitored to evaluate irrigation 
volumes and energy consumption. Ground sensors (i.e., three water content probes, a 
piezometer) were installed to monitor soil water status in the field. 
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11.3. Assessment of the digital solution 

The benefits of the solution have been assessed via defined key performance indicators (KPI). 
The results are summarised in Table 24. Details on the input data considered, as well as on 
the calculations, are given in the subsections below. 

Figure 41 shows how the Seasonal Local Water Stress changes over the reference period (; 
white curve represents the average value inside the demo site while the gray area shows the 
10th and 90th percentiles). Data are obtained from the processing of the Sentinel-2 L2 product 
with a cloud coverage lower than 30%. It is possible to show that during the agronomic season 
May – September the variance tends to have low values due to irrigation. It should be 
necessary to keep the variance as low as possible. A right management of crop should avoid 
water stress also distributing water to keep where possible low the variance of the SLWS 
index.  

The raster (stress) map (Figure 42, left) related to the SLWS KPI reflects the performance of 
crop-soil system; this performance is not static over the season and the farmer could re-
schedule the irrigation to reduce the water stress. UAV, satellite, and ground sensor data 
support the farmer to take decisions to reduce the stress. Figure 42, right, is related to the 
nutrient stress evaluated through the SLNS. Also, in this case the farmer could take actions 
to reduce the nutrient stress (e.g., changing the fertigation scheme, variable rate 
treatments, etc.). 

 

 

 

Table 24: Overview table of KPI assessment 

KPI Short description Quantification 

Seasonal Local Water 
Stress (SLWS) 

KPI that shows for each area of a field 
the level of water stress over a time-
window. 
The data used to evaluate the water 
stress are acquired using UAV, SATs 
and ground sensors. 

Raster maps of seasonal water stress 
(maps derived from thermal and 
optical data). The map could be used to 
change the scheduling of irrigation 
system (increase the amount of water) 
 

Seasonal Local Nutrient 
Stress (SLNS) 

KPI that shows for each area of a field 
the level of nutrient stress over a time-
window. 
The data used to evaluate the nutrient 
stress are acquired using UAV, SATs 
and ground sensors. 

Raster maps of seasonal nutrient stress 
(maps derived from optical data). The 
map could be used to change the level 
of nutrients also in case of fertigation 
or variable rate where available. 
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KPI Short description Quantification 

Monitoring Performance 
(Efficiency, quality, 
velocity, and cost) 

Evaluation of the spatio-temporal 
coverage of a field to monitor the 
nutrient and water stress that also 
considers the overall cost and data 
quality. The comparison puts in 
evidence the gain over a baseline 
scenario that is represented by visual 
assessments 

Gain of digital solution over the visual 
assessment (VS): of a field: 100% 
 
Gain of digital solution over the visual 
assessment (VA+GS) + ground sensors 
of a field: 43% 
 

 

 
Figure 41: Evaluation of the Normalized Difference Moisture Index over a 6-month time span (last point is 23 Sept 2021). 

 

  
Figure 42: Left: evaluation of the Seasonal Local Water Stress (20th Jul 2021). Right: evaluation of the Seasonal Local Nutrient 
Stress (20th Jul 2021). 

Figure 43 shows how the yield is influenced by the combination of water and nutrient stress. 
In the worst case (no irrigation and no fertilization), the final yield is 1.7/ha while in the best 
case (irrigation with 100% of evapotranspiration and high nitrogen rate 350kg/ha) the final 
yield could reach the value of 6.8t/ha (4 times more than in the worst case). It is clear how the 
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maps derived from UAV and satellites could help the farmer to reduce as much as possible the 
water and nutrient stress to optimize the final yield (data obtained from a trial in a dedicated 
test field to evaluate how irrigation and nutrient impact on the final yield). I0, I1 and I2 and 
F0, F1, F2 and F3 are levels of irrigation (0, 50 and 100% of evapotranspiration) and 
fertilization, mainly Nitrogen, (0, 65, 225 and 340 and kg/ha) respectively. 

 

Figure 43: Effect of water and irrigation stress on the final yield. 

11.3.1. KPI 1: Seasonal Local Water Stress (SLWS) 

The effectiveness of crop irrigation can be influenced by several factors (e.g., soil, slope, 
availability of water, malfunctions of the irrigation system). In this context, appropriate 
monitoring plays a key role to avoid stress conditions that could negatively impact the final 
yield. The evaluation highlights the internal uniformity of the field in terms of water stress and 
provides a normalized dimensionless value that quantifies the water stress (as in the case of 
several indexes such as the Normalized Difference Vegetation Index, the Normalized 
Difference Red Edge, etc). 

Thermal index 

Using UAV and multi-spectral data it is possible to determine the actual water stress using the 
thermal band. We refer to the Crop Water Stress Index (CWSI). This index measures the 
transpiration rate of a crop on a scale from 0 to 1, by estimating the canopy temperature and 
the vapor pressure deficit. When the temperature of the leaf exceeds the air temperature by 
4 to 6 °C, the resulting number is closer to 1 and the plant is defined to be under water stress. 
A CWSI of 0 corresponds to a well-watered crop with a dry soil background, while 1 represents 
a water-stressed crop. We decided to use ICWSI (1 – CWSI). In this case, values close to 1 
represent a well irrigated crop while a value close to 0 represents a potential stress condition. 

Optical Index 
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Using satellite data, water stress is evaluated through the Normalized Difference Moisture 
Index (NDMI). This kind of index has been selected by ESA as a spectral index which is 
particularly sensitive to the water content of the vegetation. This index relies on the NIR band 
and a SWIR band. 

𝑁𝐷𝑀𝐼 =
𝑅𝑁𝐼𝑅 865 𝑛𝑚 −  𝑅𝑆𝑊𝐼𝑅 1610 𝑛𝑚

𝑅𝑁𝐼𝑅 865 𝑛𝑚 +  𝑅𝑆𝑊𝐼𝑅 1610 𝑛𝑚
 

The combination of the NIR with the SWIR removes variations induced by the leaf internal 
structure and leaf dry matter content, improving the accuracy in retrieving the vegetation 
water content. The water stress is also related to the Normalized Difference Vegetation Index 
that could be calculated using satellite and UAV data. The value range of the NDMI is -1 to 1. 
Negative values of NDMI (values approaching -1) correspond to barren soil. Values around 
zero (-0.2 to 0.4) generally correspond to water stress. High, positive values represent high 
canopy without water stress (approximately 0.4 to 1.0). 

KPI Formula 

In case of UAV, we use CSWI as the index. In case of satellites, we use NDMI as the index. We 
calculate the Seasonal Local Water Stress (SLWS) as it follows: 

𝑆𝐿𝑊𝑆(𝑖, 𝑗) =  
1

𝑐𝑜𝑢𝑛𝑡(𝑆1, 𝑆2)
∑ 𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗)𝑡 − 𝑖𝑛𝑑𝑒𝑥𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑆2

𝑡=𝑆1
 

i and j are the longitude and latitude of a given pixel within the area of interest, and S1 and S2 
identify the reference period; count is a function that returns the number of acquisitions in 
the selected period. 𝑖𝑛𝑑𝑒𝑥𝑡 represents the average performance on the field at time t. High 
values of SLWS identify low water stress conditions. More details regarding the time-series 
analysis are discussed in the references given in Pesaresi et al. (2020a and 2020b)16, 17. This 
index shows the stress over the field considering that typically there is not a single number to 
evaluate the performance of the field. The performance is specific for each location (pixel).  

11.3.2. KPI 2: Seasonal Local Nutrient Stress (SLNS) 

Using satellite and UAV data, nutrient stress is evaluated through the Normalized Difference 
Red Edge Index (NDRE). This kind of index has been selected considering its high sensitivity to 
nutrient stress (nitrogen). This index relies on the NIR and Red-Edge bands and it is calculated 
as it follows: 

𝑁𝐷𝑅𝐸 =
𝑅𝑁𝐼𝑅 – 𝑅𝑅𝐸𝐷 𝐸𝐷𝐺𝐸 

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 𝐸𝐷𝐺𝐸 
 

                                                      

16 Pesaresi, S.; Mancini, A.; Casavecchia, S. (2020): Recognition and Characterization of Forest Plant Communities through 
Remote-Sensing NDVI Time Series. Diversity, 12, 313. https://doi.org/10.3390/d12080313 
17 Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. (2020): Mapping Mediterranean Forest Plant Associations and 
Habitats with Functional Principal Component Analysis Using Landsat 8 NDVI Time Series. Remote Sens., 12, 1132. 
https://doi.org/10.3390/rs12071132 
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KPI Formula 

We calculate the Seasonal Local Nutrient Stress (SLNS) as it follows: 

𝑆𝐿𝑁𝑆(𝑖, 𝑗) =  
1

𝑐𝑜𝑢𝑛𝑡(𝑆1, 𝑆2)
∑ 𝑖𝑛𝑑𝑒𝑥(𝑖, 𝑗)𝑡 − 𝑖𝑛𝑑𝑒𝑥𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑆2

𝑡=𝑆1
 

i and j are the longitude and latitude of a given pixel within the area of interest, and S1 and S2 
identify the reference period; count is a function that returns the number if acquisitions in the 
selected period and index is the NDRE. 𝑖𝑛𝑑𝑒𝑥𝑡 represents the average performance on the 
field at time t. High values of SLNS identify low nutrient stress conditions. 

11.3.3. KPI 3: Monitoring Performance (Efficiency, quality, velocity and cost) 

The digital solution relies on different data-sources. The best solution optimizes a cost 
function that considers different features as data quality, spatial resolution, samples /ha, 
cost/ha. In the following table we provide ranking (from 1 to 5, where 1 means bad 
performance and 5 optimum) of different technologies also providing the ranking of our digital 
solution. 

Spatial resolution reflects the capability to capture variability in a given (spatial) area of a field. 
Of course, remote sensed platforms (e.g., aerial vehicles) have better spatial resolution if 
compared with ground sensors that provide accurate and precise data even if strongly local. 
Regarding the temporal resolution of course ground sensors output data with periods from 1 
to 60 mins. Satellites are able to acquire data within the range of 1-10 days even if weather 
conditions and elevation of sun (related to acquisition time) have negative impacts. Satellites 
are able to cover area (order of km2) while drones could cover areas up to 200-300ha / flight18. 

 

Table 25: KPI assessment for DS5.2 to evaluate the efficiency, quality, velocity and cost of our digital solution over reference 
approaches. 

 Visual 
Assessment 

Ground 
Sensor 

Fixed-wing 
aerial 
vehicle 

Rotary-
wing aerial 
vehicle 

Low res 
SAT (GSD 
30m+) 

High res 
SAT (GSD 
<30m) 

Our digital 
solution 

Data quality 2 5 5 4 4 4 4 

Spatial 
Resolution 1 1 4 5 2 3 5 

Samples / 
ha per week 1 5 2 2 3 3 5 

Cost / ha 1 2 3 2 4 4 4 

                                                      

18 fixed wing drones can map 200-300ha ( indicative value for a single flight); of course the coverage is related to the flight 
altitude / desired ground sampling distance; rotary wing drones instead due to constraints on batteries could map smaller 
areas in the order of 10-20ha (indicative value) per flight. 



 

 

105 

Upfront-
cost 5 2 1 2 3 3 2 

Score 10 15 15 15 16 17 20 

 

Data quality plays a key role to ensure that digital solution is working on scientific data. Visual 
assessment embeds the experience of the observer (e.g., agronomists) but could be impacted 
by bias / experience. The use of sensors and more in general of scientific payloads ensures 
high-quality data. A relevant aspect is also related to the calibration. Period maintenance of 
sensors (especially probes installed inside the soil) is required to avoid errors during the 
measurement process. Our digital solutions integrate different technologies such as ground 
sensors, unmanned aerial vehicles and satellites. The combined use of different technologies 
has positive impact if compared with Visual Assessment (VA) or Visual Assessment + Ground 
Sensor (VA+GS) that are the most common scenarios in agriculture. If we consider the two 
reference scenarios the gain of our digital solution is calculated as the ratio between the score 
of our digital solutions (see previous table) over the score of baseline scenarios. To calculate 
the performance of VA+GS we consider the max value of Data quality, Spatial Resolution, 
Samples / ha per week between VE and GS while we consider the min for Cost / ha and 
Upfront-cost (score = 14). The score of our digital solution is double respect to the VA scenario 
while is 1.43 if compared with the VA+GS. 

The gain of our digital solution over the VA scenario is 2 while over the VA+GS calculated is 
1.43. The digital solutions rely on different data-sources and equipment with an impact on the 
cost of solution. However, the cost of the digital solution must be related with the potential 
loss of yield that could occur if visual assessment is not regularly performed and/or if the 
ground sensors deployed on the field are unable to capture dynamics due to low density (low 
number of devices). 

 

11.4. Return on experience 

The experimental application of drones, satellites, and ground sensors to monitor water stress 
highlighted opportunities and issues.  

An important aspect to consider is the potential to gather data offered by using Unmanned 
Aerial Vehicles. The demo area (Peschiera Borromeo) is located nearby the Milano Linate 
Airport (LIML ICAO code) and the test field was in a red area where flights are not allowed. 
For this reason, it is necessary to apply for NOTAM and account for several potential 
restrictions such as the maximum altitude above the ground level (in that area ENAC 
authorized 20 m). In peri-urban areas it is necessary to consider these constraints that limit 
the capability to acquire data. By flying at 20 m, it is possible to obtain ultra-high-resolution 
images, but it is necessary to fly for longer times considering the flight altitude and the camera 
performance (it is necessary to fly at 2-3 m/s at 20 m to avoid blurring effects also ensuring a 
good overlap among images, which is a key factor to generate the final ortho-photo). 
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The digital solution enables the mapping of stress conditions that is a spatially distributed 
phenomenon. The end-user could adapt the irrigation and check the effect by evaluating the 
KPI over a given temporal range (not necessary the overall season). 

The capability to monitor the crop using drones, satellites, and ground sensors (as done in this 
digital solutions) represents a key component that is discussed in the following digital 
solutions (DS5.2). The identification of water stress and more in general the crop status could 
be used to support the Insurance Providers (IP) if a Notice of Loss (NoL) is opened by a farmer. 
For high value crops or in case of large fields (100ha+) insurance is a common way to avoid 
loss of profit and monitoring systems are necessary to optimize the agronomic operations. 
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12. DS5.2: Match-making tool between water demand for irrigation and safe water 
availability 

12.1. Digital solution 

Currently, in many regions, treated waste-water is often discharged into rivers or even directly 
into existing agricultural networks and then used by farmers for irrigation as an addition to 
the available freshwater. Such practice, however, does not maximize the added value of the 
treated water due to the dilution effect. Moreover, a tool that matches the availability of 
water from the WWTP with the end-users (farmers) needs, both in terms of quantity and 
quality, would be crucial for maximizing treated waste-water reuse benefits. Our DS5.2 aims 
to fill this gap.  

Specifically, the Match Making Tool (MMT) is a web app that visualises and matches the 
requirements of the different stakeholders involved in the water reuse practice. It integrates 
data from farmers, online services (weather), sensors and the WWTP. This digital solution is 
linked to the topic of sustainable and safe water-reuse in agriculture. In fact, the MMT is 
designed to find a match between water demand for irrigation and safe water availability. 
According to the regulation on the minimum requirements for water reuse, the crop type and 
irrigation method determine the water quality class needed, which in turn determines the 
treatment technology that should be used and its required performance, as well as the 
operations carried out by the water utility and reclamation facility operator. Therefore, the 
matchmaking tool will support several key stakeholders: the utility, the reclamation facility 
operator, the irrigation network operators and the farmers. DS5.2 is based on the integration 
of different data to map, match and monitor the different user needs. 

The Match Making Tool interacts with the end-user with a reduced and user-friendly interfac 
e. The front-end development is inspired by the modern material design approach trying to 
engage the user with a UI/UX that is similar to other widespread applications. The following 
data are managed by the MMT: 

• Weather information 
o Forecasts are derived from external web-services. 
o Consolidated time series are obtained from local weather stations. 

• Crop & Soil parameters and field locations 
o Farmers provide static data such as the location of their field and the field area. This 

data will be provided at the beginning of the season. 
o Farmers have the option to specify the soil parameters. In case they don't provide any 

information, ancillary data from a geo-database are used instead. Crop details are also 
required, specifically, crop type and seeding/emergence date.  

o Farmers also provide details regarding their irrigation system (e.g., surface, sprinkler, 
drip, …) 

o Farmers could also provide dynamic data such as the crop development stage; this 
would allow for a more accurate estimation of irrigation needs. 
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Figure 44: UI of the MMT – farmer view 
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These data are pre-processed using the Soil Water Atmosphere Plant (SWAP) software19, 
which was adapted to run in a dockerized environment, considering that the back-end of the 
MMT runs in a serverless environment. SWAP simulates the transport of water, solutes and 
heat in unsaturated/saturated soils. SWAP enables the simulation of flow and transport 
processes at the field scale, during growing seasons over long periods. It offers a wide range 
of possibilities to address both research and practical questions in the domains of agriculture, 
water management and environmental protection. The serverless function is triggered by the 
front-end through a REpresentational State Transfer (REST) Application Program Interface 
(API) considering the field of interest and the optional data provided by the farmer, such as 
the crop development stage. The output of the developed function consists of the water needs 
for the following days.  

Another relevant aspect behind the MMT is the link with the WWTP: farmers can check if 
treated waste-water is available for reuse and its related water class in real time. Figure 44 
gives an indication of the information provided by the MMT for a set of fields next to a given 
WWTP. 

12.2. Demo description 

In a first phase, the MMT is tested with designated test-users at the Peschiera Borromeo site, 
which is the same test area as for DS5.1 (Chapter 11). In a second phase, the MMT is delivered 
to all interested local farmers to establish a smart irrigation community (see Figure 45); they 
will be able to provide basic information such as the crop type, details on their irrigation 
practice, seeding date, and few other easily-accessible data. The MMT could be used within 
the whole district of Peschiera Borromeo (although of course, farmers would not obliged to 
follow the irrigation advice provided by the MMT). 

Farmers could benefit from the use of this tool also without treated waste-water reuse, 
considering that the sources of water are different (e.g., in case a farm doesn’t have a WWTP 
nearby and there is no capability to sink reused water). Data from the WWTP are collected 
from the CAP control room through Message Queue Telemetry Transport Secure (MQTTS). 
The weather station is placed inside the WWTP, and data are available by using REST API. 
These data are shared through the MMT for supporting end-users’ decisions. Information 
from the Early Warning System developed in the context of DS3 (Early Warning System for 
safe reuse of treated waste-water for agricultural irrigation) and the quality of water play a 
key role to inform if the water is safe to be used to irrigate a given field using water from the 
WWTP. 

                                                      

19 Soil Water Atmosphere Plant (SWAP) - https://www.swap.alterra.nl/ (last access Nov.. 2022) 

https://www.swap.alterra.nl/
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Figure 45: Smart Irrigation Community that is involved in the MMT 

12.3. Assessment of the digital solution 

The benefits of the digital solution were assessed via three performance indicators (KPIs; Table 
26) which represent the water, fertilizer and CO2 savings offered by two scenarios that use 
treated waste-water through drip irrigation, vs. a baseline scenario representing the current 
standard practice (i.e. border irrigation with freshwater). Details of the scenarios are as 
follows: 

▪ Baseline (S0): border irrigation provided by pumping water for a fixed time and interval 
from an open channel fed by a river diversion (typical scenario adopted by farmers), using 
a pump powered by a tractor to lift water from the channel (Figure 46). 

▪ Precision drip irrigation using the MMT (S1): drip irrigation where, every day, the amount 
of water from the WWTP (to be) provided is estimated by calculating the hydrological 
balance (daily time step) using the hydrological model included in the MMT (specifically, 
the Soil-Water-Plant-Atmosphere (SWAP) model, developed by the University of 
Wageningen and widely applied to study and manage the irrigation of different crops, 
including maize). The irrigation event is set to start when the total soil water content in 
the root zone falls below a given threshold (specifically, 60% of the crop Readily Available 
Water (RAW), which is a common criterion for maize irrigation). The water depth provided 
is the amount needed to restore the soil field capacity and calculations are performed for 
three soil types, i.e., medium, fine and coarse texture. 

▪ Standard drip irrigation (S2): drip irrigation where a fixed month-specific amount of water 
from the WWTP is provided every day (specifically, 10 mm for June and August, and 15 
mm for July). 
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Figure 46: border irrigation (left) vs. drip irrigation (right) at Peschiera Borromeo. 

Table 26: Overview table of KPI assessment for DS5.2 

KPI Short description Quantification 

Saved Water  

[%] and [mm] 

This KPI can be calculated either as a 
ratio of saved water OR as the saved 
water volume (i.e. absolute value) 
compared to the baseline scenario.  

• S1: 68% of saved water compared 
to baseline (513 mm) 

• S2: 29% of saved water compared 
to baseline (223 mm) 

 

Saved Fertilizer  

[%] and [kg/year] 

This KPI can be calculated either as a 
ratio of saved nitrogen (i.e. nitrogen 
from the reuse of treated waste-
water vs. nitrogen needed from 
standard fertilizers using a standard 
rate for the crop under examination) 
OR as an absolute value (i.e. 
difference between nitrogen 
provided as top-dressing and 
nitrogen provided through 
fertigation). 

• S1: 48% of saved fertilizer 
compared to the baseline (37 
kg/ha) 

• S2: 100% of saved fertilizer 
compared to the baseline (4 extra 
kg/ha) 

Saved CO2  

[kg/yr] 

This KPI can be calculated as the 
difference between the CO2 produced 
under the baseline scenario and the 
two re-used water scenarios. 

• S1: 6802 kg of saved CO2 
compared to the baseline 

• S2: 6911 kg of saved CO2 
compared to the baseline 

Details on input data and calculations are given in the following subsections. 

12.3.1. KPI 1: Saved Water 

The KPI can be calculated either as a rate or as an absolute value.  

In the former case, we calculate the Rate of Saved Water (𝑅𝑆𝑊) as follows: 

𝑅𝑆𝑊 =
𝐷𝑊

𝑂𝐴𝑊
∗ 100 (%) 

Where: 
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𝐷𝑊 is the amount of water provided from the WWTP; 𝑂𝐴𝑊 is the Overall Amount of Water 
required by the crop over the season. In the latter case, we calculate the Absolute value Saved 
Water (𝐴𝑆𝑊) as the difference between the amount of water provided under the baseline 
scenario (𝑆0) and that provided through drip irrigation (𝑆𝑥, where 𝑥 can be either scenario 1 
or 2): 

𝐴𝑆𝑊 = 𝑉𝑆0 − 𝑉𝑆𝑥 

Where: 

𝑉𝑆0 is the yearly volume (mm) provided through border irrigation (𝑆0) calculated based on 
pump discharge for border irrigation (m3/h), hours of pump functioning for irrigation I (h), and 
number of border irrigation events over the year; 

𝑉𝑆𝑥 is the yearly volume (mm) provided by pump in scenarios 𝑆1 and 𝑆2, calculated based on 
pump discharge for drip irrigation (m3/h), hours of pump functioning for drip irrigation in day 
d, the number of drip irrigation systems. 

Results for the first season examined are: 

▪ Baseline: 758 mm (considering the sum over 3 irrigation events: 243 mm + 300 mm + 
215 mm). 

▪ S1: 245 mm (taking the average across the 3 soil types: medium texture: 252 mm, fine: 
172 mm, and coarse: 310 mm). 

▪ S2: 535 mm. 

12.3.2. KPI 2: Saved fertilizer 

The difference in the use of fertilizer between the baseline (𝑆0) and scenarios 𝑆1 and 𝑆2 
concerns nitrogen only. In fact, the basal dressing before sowing has been the same for all 
scenarios, whereas post-emergence top-dressing has been applied for the baseline scenario 
only. Such fertilization scheme is a standard for the crop under examination (i.e., corn). 

As for saved water, also the fertilizer-associated KPI can be calculated as a ratio or as an 
absolute value. 

On the one hand, we calculate the Ratio of Saved Fertilizer (𝑅𝑆𝐹) as the ratio between the 
amount of nitrogen provided through the re-used water over the season (NFWSx) and the 
amount that needs to be provided using standard fertilizers over the season (NFF) using a 
standard rate for corn: 

𝑅𝑆𝐹 =  
NFWSx

NFF 
∗ 100 (%) 

On the other hand, we calculate the Absolute value Saved Fertilizer (ASF) as the difference 
between the nitrogen amount provided as top-dressing and that provided through drip 
irrigation using water from the WWTP over the season: 

ASF = NFF − NFWSx (kg/year) 
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Where: 

NFF is the amount of nitrogen provided within the baseline scenario (𝑆0) through top-
dressing20 over the season (kg/year). 

NFWSxis the amount of nitrogen provided through the treated waste-water within scenarios 𝑆1 and 
𝑆2 over the season (kg/year). 

Results of provided N amounts to the field are summarized as it follows: 

▪ Baseline: 70 kg/ha as top-dressing  
▪ S1: 36 kg/ha from treated waste-water 
▪ S2: 74 kg/ha from treated waste-water 

 

Therefore, related KPIs for the first season are: 

▪ S1: 49% (36 kg/ha) of saved fertilizers 
▪ S2: 104% (4 extra kg/ha) of saved fertilizers 

 
It should be noted that estimation of these KPIs can be refined by further considering the 
different efficiency in using N units in the case of top-dressing and fertigation. 

12.3.3. KPI 3: Saved CO2 

The CO2 produced within the baseline scenario (𝑆0) comes from: 

▪ Fuel consumption of the tractor required for the functioning of the pump 
▪ Top-dressing nitrogen supply 

The CO2 produced within the drip irrigation scenarios (𝑆1and 𝑆2) comes from: 

▪ The WWTP activity to supply the crop water demand through drip irrigation (currently 
neglected) 

▪ The energy consumption for the functioning of the pump 
▪ The nitrogen supply with fertigation as the difference between the nitrogen supplied through 

top-dressing and the nitrogen provided through the drip irrigation with re-used water  

The associated KPI, referred to as Saved CO2 (𝑆𝐶𝑂2), can be calculated as the difference between 
the CO2 produced under the baseline scenario (𝑆0) and the re-used water scenarios (𝑆1and 
𝑆2): 

𝑆𝐶𝑂2 =  𝐶𝑂2𝑆0 − 𝐶𝑂2𝑆𝑥 (kg/year) 

Where: 

                                                      

20 The top-dressing amount is provided once and must consider nitrogen loss due leaching and denitrification processes. 
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𝐶𝑂2𝑆0 is estimated based on the hours of tractor functioning for border irrigation, the number 
of border irrigation operations, the tractor unit fuel consumption, the amount of CO2 

produced for fuel unit, the amount of CO2 produced for nitrogen unit; 

𝐶𝑂2𝑆𝑥 is estimated based on the power of the drip irrigation plant pump, the hours of pump 
functioning per day, the number of drip irrigation systems, the CO2 produced per unit of 
energy consumed, and the CO2 emitted per unit of nitrogen produced in case that provided 
through fertigation is not enough. 

Results of produced CO2 are summarized as it follows 

▪ Baseline (total 7322 kg):  
o From diesel consumption 2618 kg  
o From fertilizer production: 4704 kg  

▪ S1 (total 520 kg):  
o CO2 produced from pump functioning: 230 kg 
o CO2 produced from fertilizer production 290 kg 

▪ S2 (total 411 kg):  
o CO2 produced from pump functioning: 441 kg 
o CO2 saved from fertilizer production 30 kg 

 
It should be noted that estimation of these KPIs do not consider the emissions linked with the 
WWTP processes. 

12.4. Return on experience 

The design and development of the MMT highlighted opportunities and issues.  

A possible limitation of the solution is related to the availability and quality of water from the 
WWTP, which has consequences and possible side effects that depend on the combination of 
the following main factors: 

• type of crop; 

• growing/development stage of the crop (week of the year / development stage 
according to BBCH21); 

• meteorological conditions; 

• occurrence and length of treated wastewater supply interruption. 

The impacts can be minimal in case of less sensitive growing stages, low-stress meteorological 
conditions and short interruptions, while they can be tragic in case of crucial growing stages, 
high-stress meteorological conditions and long interruptions. An option that could be 
explored to counteract this limitation is the use of dedicated insurance contracts. The 
capability to acquire data regarding the management of irrigation (also including WWTP) 
could be used to support the Insurance Providers (IP) if a Notice of Loss (NoL) is opened by a 

                                                      

21 BBCH, https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf (last access 
Nov 2021) 

https://www.politicheagricole.it/flex/AppData/WebLive/Agrometeo/MIEPFY800/BBCHengl2001.pdf
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farmer. Data sharing is a key factor to establish a link between IPs and farmers. This aspect 
also reinforces the engagement of other stakeholder as the irrigation consortia and the farmer 
associations to establish contracts that will promote the use of digital solutions to reduce 
where possible the insurance premium. 
 
Another aspect to consider is the complexity related to the integration of data from different 
actors such as farmers, irrigation consortia, WWTP, reclamation facility operator(s). In the 
Milan case study, the integration of data from the WWTP required considerable time due to 
several reasons (privacy, infrastructure…). However, a relevant lesson learned is the necessity 
to define a common way to exchange data in an efficient and safe way. The MMT, thanks to 
FIWARE22, gained flexibility and robustness and can now manage the integration of data that 
come from the WWTP effectively. 

The MMT also requires a strong interaction with end-users and all involved stakeholders (e.g., 
reclamation facility operator, farmer association, irrigation consortia, …). It is complex to 
change well consolidated approaches; the MMT aims to providing suggestions to end-users 
that -if considered- will enable to improve the management of water resources for irrigation.  

  

                                                      

22 FIWARE - https://www.fiware.org/ (last access Nov 2021) 

https://www.fiware.org/


 

 


