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Summary 
 
Work package WP 5.2 “Combination of Managed Aquifer Recharge (MAR) 
and adjusted conventional treatment processes for an Integrated Water 
Resources Management“ within the European Project TECHNEAU 
(“Technology enabled universal access to safe water”) investigates bank 
filtration (BF) + post-treatment as a MAR technique to provide sustainable 
and safe drinking water supply to developing and newly industrialised 
countries.  
One of the tasks within the project was the identification of state-of-the-art 
tools in the field of well field optimization modelling. Most of the currently 
used tools are process-driven simulation models like MODFLOW or 
FEFLOW. These are sometimes also combined with optimization models to 
reduce the computational demand and are utilized as strategic planning tools 
for water supply managers. However, in case of optimizing well field 
operation (i) under relatively constant boundary conditions and (ii) enough 
field data (temporal and spatial resolution dependent of the dynamics of the 
state parameter of interest, e.g. groundwater table, contaminant 
concentrations) data-driven approaches like support vector machines (SVM) 
can be used instead. If the water manager’s key interest is only a good 
predictive capability in combination with low computational demand, the 
application of this approach is more goal-orientated to simulate the dynamics 
of well field performance indicators efficiently.  
The contents of this report were presented to possible end-users, experts from 
Berliner Wasserbetriebe and Veolia. In agreement with their 
recommendations it was decided to focus further research within 
TECHNEAU on the empirical, data driven modelling approach. The selected 
approach is currently tested in the framework of a diploma thesis for a Berlin 
waterworks with the objective to analyse available production and 
observation well hydrographs by using modern statistical methods like 
principal component analysis and SVM (www.support-vector-machines.org).  
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TKI Categorisation 
 

Classification 
Supply Chain  Process Chain  Process Chain (cont’d)  Water Quality  Water Quantity (cont’d)  

          

Source  Raw water storage  Sludge treatment  Legislation/regulation  - Leakage  

- Catchment X - Supply reservoir  - Settlement  - Raw water (source)  - Recycle X 

- Groundwater X - Bankside storage X - Thickening  - Treated water    

- Surface water X Pretreatment  - Dewatering  Chemical    

- Spring water  - Screening  - Disposal  - Organic compounds    

- Storm water  - Microstraining  Chemical dosing  - Inorganic compounds    

- Brackish/seawater  Primary treatment  - pH adjustment  - Disinfection by-products    

- Wastewater  - Sedimentation  - Coagulant  - Corrosion    

Raw water storage  - Rapid filtration  - Polyelectrolyte  - Scaling    

- Supply reservoir  - Slow sand filtration  - Disinfectant  - Chlorine decay    

- Bankside storage X - Bank filtration X - Lead/plumbosolvency  Microbiological    

Water treatment  - Dune infiltration  Control/instrumentation  - Viruses  Consumers / Risk  

- Pretreatment X Secondary treatment  - Flow  - Parasites    

- Primary treatment X - Coagulation/flocculation  - Pressure  - Bacteria  Trust  

- Secondary treatment  - Sedimentation  - pH  - Fungi  - In water safety/quality X 

- Sludge treatment  - Filtration  - Chlorine  Aesthetic  - In security of supply X 

Treated water storage  - Dissolved air 
flotation(DAF) 

 - Dosing  - Hardness / alkalinity  - In suppliers X 

- Service reservoir  - Ion exchange  - Telemetry  - pH  - In regulations and 
regulators 

 

Distribution  - Membrane treatment  Analysis  - Turbidity  Willingness-to-
pay/acceptance 

 

- Pumps  - Adsorption  - Chemical  - Colour  - For safety X 

- Supply pipe / main  - Disinfection  - Microbiological  - Taste  - For improved 
taste/odour 

X 

Tap (Customer)  - Dechlorination  - Physical X - Odour  - For infrastructure X 

- Supply (service) pipe  Treated water storage      - For security of supply X 
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Internal plumbing  - Service reservoir    Water Quantity  Risk Communication  

- Internal storage  Distribution      - Communication 
strategies  

 

  - Disinfection    Source  - Potential pitfalls  

  - Lead/plumbosolvency    - Source management X - Proven techniques X 

  - Manganese control    - Alternative source(s) X   

  - Biofilm control    Management    

  Tap (Customer)    - Water balance X   

  - Point-of-entry (POE)    - Demand/supply trend(s) X   

  - Point-of-use (POU)    - Demand reduction    

TKI Categorisation (continued) 

 
Contains  Constraints  Meta data      

Report X Low cost x Michael Rustler, Gesche 
Grützmacher  

     

Database  Simple technology x KompetenzZentrum Wasser 
Berlin 

     

Spreadsheet  No/low skill requirement x Michael Rustler      
Model  No/low energy 

requirement 
x michael.rustler@kompetenz-

wasser.de 
     

Research  No/low chemical 
requirement 

x       

Literature review X No/low sludge production x       
Trend analysis  Rural location x       
Case study / demonstration  Developing world location x       
Financial / organisational          
Methodology X         
Legislation / regulation          
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1 Introduction 

Context 
The work package WP 5.2 “Combination of Managed Aquifer Recharge 
(MAR) and adjusted conventional treatment processes for an Integrated 
Water Resources Management“ within the European Project TECHNEAU 
(“Technology enabled universal access to safe water”) investigates bank 
filtration (BF) + post-treatment as a MAR technique to provide sustainable 
and safe drinking water supply to developing and newly industrialised 
countries. One of the tasks within this work package is to review existing 
tools for well field modelling in order to optimize the operation of well fields 
supplied by BF or MAR. This report summarizes the outcomes of this analysis 
and serves as a basis for the decision, which model approach can be tested for 
applicability in the further course of the project. 
 
Background 
A conceptual framework for well field optimization modelling is illustrated in 
Figure 1, which defines the main steps for the development and application of 
combined simulation-optimization models as described in Chapter 2.2. 
In the first step the decision makers have to specify their management 
problem. For this they need to determine the key objectives (e.g. minimum 
raw water quality) and the constraints (e.g. maintaining predefined minimum 
groundwater levels) for the well field management. Subsequently either data-
driven or process-driven simulation modelling (see Chapter 2.1) is used for 
the assessment of the impacts of different operational management plans on 
the groundwater system (state parameters e.g. groundwater levels, 
contaminant concentrations).  
 

 

Figure 1 Conceptual framework for well field optimization modelling  
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Finally the optimal operational parameters are derived either by using 
mathematical optimization modelling (see Chapter 2.2) to identify the optimal 
values of operational decision parameters (e.g. pumping rates) or by using a 
simple trial-and-error technique (applicable for less complex management 
problems, where few management objectives shall be optimized).  
 
The aim of this report is to give an overview of the current state-of-the-art 
tools for well field optimization management and answer the following 
questions: 

- What is the difference between optimization and simulation 
modelling? What are these tools useful for?  

- Which simulation approach (process-driven vs. data-driven) is more 
goal-orientated for a given problem at hand? 

- Which simulation approaches and management tools are currently 
used by water suppliers (e.g. BWB, Veolia)? 
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2 Well Field Optimization Modelling 

2.1 Simulation Modelling 

 
Simulation modelling helps in answering ‘what-if’ questions through scenario 
modelling. One question may be for example what will happen to the 
pumped raw water quality at a bank filtration site if the sulphate 
concentration in the nearby surface water body rises. This can be evaluated 
through simulation modelling.  For this purpose at least two model scenarios 
using different initial sulphate concentrations in the surface water body are 
computed and the impact on the pumped raw water quality is compared.  
According to Figure 2 simulation models can be purely data-driven, purely 
process-driven or a mixture of both. In this report we will focus only on the 
two extremes. 
 

 

Figure 2 Overview of simulation techniques (LOUCKS & VAN BEEK 2005) 

 
1) Process-driven or deterministic models utilize parameters whose values 
are usually determined from observed data (field measurements) during 
model calibration. The modeller attempts to incorporate what he or she 
believes to be the most important aspects of the conceptual model into a 
model so that it will provide useful information about the system. 
Deterministic groundwater models are based on knowledge of the 
fundamental processes like conservation of mass, momentum and energy 
(‘white box’ models).  
The resulting partial differential equations can be solved analytically, but an 
analytical model like for example the Bank Filtration Simulator (HOLZBECHER 
et al. 2008) requires that the parameters and boundaries are highly idealized 
(e.g. homogenous aquifer & constant flux boundary). This is illustrated in 
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Figure 3, where different operational scenarios (pumping rates) were 
calculated considering the inherent uncertainty with the parameterisation of 
the clogging parameter (at an exemplary bank filtration scheme). The results 
show that the operational management decisions are very sensitive to the 
parameterisation of the clogging parameter, which in turn is highly variable 
in time and space (e.g. WIESE & NÜTZMANN 2009) and thus difficult to 
specify. 
 

 

Figure 3 Process-driven simulation model (Bank Filtration Simulator): Impact 
of different pumping rates under uncertain clogging parameter (no 
clogging: no difference in hydraulic conductivity between aquifer and 
bank; medium clogging = 100 times lower hydraulic conductivity in 
bank than in aquifer; high clogging = 5000 times lower hydraulic 
conductivity in bank than in aquifer) on both, bank filtration share 
and minimum travel time. 

 
For most real-world problems the simplified assumptions (e.g. homogenous 
aquifer) of analytical models are insufficient approximations. KALBUS et al. 
(2009) investigated the influence of heterogeneous and homogenous 
streambed conductivities on the groundwater discharge for an effluent (or 
gaining) river reach and concluded that the homogeneity assumption leads to 
an underestimation of groundwater discharge variability by a factor of ten 
compared to measured values. Numerical groundwater models like 
MODFLOW (HARBAUGH 2005) or FEFLOW (DIERSCH 2009) are able to 
simulate complex, steady-state and transient 3-D-flow and (reactive) 
transport processes in heterogeneous river-aquifer systems, but at the 
expense of longer simulation times (sometimes hours to days). In addition, 
the higher the included complexity of these numerical groundwater models 
the more model parameters are needed, which can easily lead to (i) over 
parameterisation (and thus a lower predictive model capacity) and (ii) higher 
data demand for calibration. A further difficulty is the inherent uncertainty of 
parameter estimation, due to an effect called ‘equifinality’ (BEVEN 2006). This 
means that two different parameter sets are able to produce exactly the same 
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hydraulic heads. For example if the hydraulic conductivity for the aquifer and 
streambed are increased simultaneously by the factor ten, the hydraulic head 
at an observation well near the river will be the same for both scenarios. 
However, the total mass flux through the aquifer is ten times larger for the 
latter scenario. Subsequently a good model fit concerning the hydraulic heads 
is not a sufficient indicator for the adequacy of the model as a predictive tool. 
Nevertheless, process-driven simulation models are the only strategic (long 
term) planning tools available which are able to analyse the effects of 
significantly changing boundary conditions (e.g. impact of new well field on 
catchment’s water budget). Thus water suppliers commonly order the 
application of process-driven models from environmental or hydrogeological 
consulting firms as done by BWB (e.g. GCI GMBH 2002) and  Veolia 
(BURGEAP 2009).  
 
2) Empirical, data-driven models aim at deriving a relationship between 
input (cause) and output data (effect), without the attempt to define any 
physical basis for the relationship (‘black box’ models).  This approach relies 
solely on measured data and its application is therefore only adequate if a 
high temporal and spatial resolution for the output variable of interest (e.g. 
water quantity, water quality) is available (BERTRAND-KRAJEWSKI et al. 2008). 
Once calibrated, the model can be used to estimate the output variable values 
as long as the input variable values are within the range of those used to 
calibrate the model (Figure 4).  
 

 

Figure 4 Data-driven simulation model: impact of data resolution (density) on 
the predictive model accuracy (arrows indicate weak model 
performance due to missing data values), (LOUCKS & VAN BEEK 
2005) 

 
Modern statistical modelling techniques are for example artificial neural 
networks (DREYFUS 2005) or support vector machines (www.support-vector-
machines.org, WANG 2005, HAMEL 2009). Both are machine learning methods 
that can be used for classification (unsupervised learning) or prediction 
(supervised learning). KHALIL et al. (2005) showed that statistical learning 
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algorithms can be used as efficient, fast computing proxy for the more 
complex, time demanding numerical groundwater models without loosing 
the predictive capability. Hence, statistical learning methods constitute a 
valuable means for saving effort in groundwater modelling and improving 
model performance at the same time. The major advantage of support vector 
machines (SVM) is the fact that they are less susceptible to overfitting than 
artificial neural networks (ANN), uniquely solvable and there is no need to 
train them in a repetitive manner (KHALIL et al. 2005). Thus the application 
SVM is highly recommended if fast (results usually within a few minutes) 
and robust model results with good predictive capability are required. In 
contrast to process-driven models, where the required input data is known a 
priori, this is not the case for data-driven models. Thus it is a precondition to 
identify the input parameters which are highly correlated with the desired 
model output in a first step, which means a significant effort in data pre-
selection (pattern recognition). This task can be accomplished by using a 
model-free tool that needs no prior assumptions about key properties of the 
data, such as dominant processes but preserves a maximum amount of 
information (LISCHEID 2009). Principal component analysis (for details, see 
REIMANN et al. 2008) is such a tool that was successfully used to identify (i) 
the key processes that drive groundwater level fluctuations in a lowland 
groundwater-surface water system and (ii) their quantitative contribution 
(LEWANDOWSKI et al. 2009). Hence, as the most important processes and thus 
input parameters are identified, the principal component analysis effectively 
helps to minimize the structural model uncertainty which in turn leads to 
more reliable predictions of the data-driven simulation model.   
 
3) Which is the optimal model approach for simulation modelling? 
Consecutively there are some questions that may help in deciding whether a 
process-driven or data-driven modelling approach is more goal-orientated for 
a given well field management problem: 

- For what purpose will the model be used? Is the main interest to get 
good predictive capacity or process knowledge? In the former case a 
data driven is adequate but a process driven approach is required for 
the latter case. 

- Is a distributed model representation (e.g. water balance for different 
sub-watersheds) or is a lumped model (e.g. groundwater dynamics of 
observation wells) sufficient? In the first case a process-driven model 
is needed, in the second case the data driven model is sufficient. 

- Are there time constraints? If yes, how long is the maximum 
acceptable computation time for one model run? Keep in mind that 
the execution time of transient process-driven models usually is much 
larger (depending of the complexity: groundwater flow, advective 
transport, biogeochemical reactions) compared to data-driven models. 

- In the case of a process-driven model: Is there enough hydrogeological 
information available to develop a conceptual model of the system of 
interest? Is the model parameterisation supported by field data to 
specify them in realistic boundaries? Is the temporal and spatial 
variability of the clogging layer negligible?  If yes, then the process-
driven model is adequate. If the contrary is true, a non-parametric, 
data driven approach is required.  
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- In the case of a data-driven model: Is the data resolution sufficient to 
adequately describe the dynamics of the system of interest (depends 
on temporal and spatial variability of the process of interest, see e.g. 
BERTRAND-KRAJEWSKI et al. 2008)? Are the boundary conditions for 
calibration and prediction period approximately the same? If yes, this 
model is well chosen to solve the problem. 

2.2 Optimization Modelling 

 
Optimization modelling addresses ‘what should we do’ questions, which 
means what are the best management options for the given objectives (e.g. 
economic, environmental) and constraints (e.g. technological, law 
restrictions). This does not mean that only one best solution is found, but 
instead a set of relatively small number of good alternatives that satisfy the 
above defined scope (objectives & constraints). If any feasible solution exists 
that satisfies the objective function it is called ‘optimal’. The objective of using 
optimization is to reduce an initially large number of potential management 
plans to a few that can be later tested through simulation modelling. In the 
context of well field management optimization models have been used to 
identify optimal (i) pumping rates and (ii) allocation of pumping rates within 
the well field in order to minimize the up-coning of deeper saline water (e.g. 
(KINZELBACH et al. 2007, RAO et al. 2007) or (iii) pumping costs (e.g. SIEGFRIED 
2004, DANSKIN et al. 2006). 
The formulation of an optimization model is the most difficult part in the 
development process. WAGNER (1975) offers the following guidelines for this 
stage of the optimization analysis: 

• What are the key decisions to be made? What problem is being 
solved? 

• What makes the real decision environment so complex as to require 
the use of an optimization model? What elements of complexity are 
incorporated in the model? What elements are ignored? 

• What distinguishes a practical decision from an unusable one in this 
environment? What distinguishes a good decision from a poor one? 

• As a decision-maker, how would you employ the results of the 
analysis? What is your interpretation of results? In what ways might 
you want or need to temper the results because of factors not 
explicitly considered in the model? 

 
A management objective can be the optimization of well field design and 
operation in order to pump a predefined minimum raw water quantity or 
quality. In this case the water resource managers’ decision parameters can be 
either design (location of pumping wells within the well field) or operation 
(pumping schedules, pumping rates, allocation of pumping rates within the 
well field) variables. The latter has been theoretically tested for the Palla well 
field northern of Delhi (India) in order to identify operation schemes that 
achieve a predefined ‘optimal’ bank filtration share (RUSTLER & BOISSERIE-
LACROIX 2010). This was done in a trial-and-error approach (see Figure 1) 
which is illustrated in Chapter 2.1. However, in a first step a conservative 
mixing model was used to identify the ‘optimal’ target bank filtration share 
range, which satisfies a predefined minimum water quality constraint. Thus 



TECHNEAU report 5.2.12  

© TECHNEAU - 8 - 18 May 2010 

 

in this application not decision parameters (e.g. pumping rates) are 
optimized, but optimization modelling was used for identification of optimal 
values for the bank filtration share (state variable) instead. This is also shown 
in Figure 5, where the feasibility space of  ‘optimal’ solutions if further limited 
due to a minimum travel time constraint (from surface water to production 
well) of at least 50 days for guaranteeing good microbiological water quality. 
  

 

Figure 5   Hypothetical multi-objective optimization model: Identification of 
target BF share range (constraint 1 & 2), including additional 
constraint for maintaining a pre-defined minimum travel time of 50 
days (constraint 3) 

 
A simple operational well field optimization problem is presented below, 
which is slightly modified from DANSKIN et al. (2006). The defined 
management goal is the maximization of the pumping rate from two wells. 
Thus the objective function (Z) can be written as: 
 

  Pump2Pump1 Q  Q   Zmaximize +=    (1) 

 
where the value of Z should be maximized and the decision variables QPump1 
and QPump2 represent the pumping rate in m³/s for production well 1 and 2, 
respectively. However, due to high fluoride concentrations (1.8 mg/L) at 
production well 1 the pumped raw water needs to be blended with the 
pumped raw water of production well 2, which contains less fluoride (0.8 
mg/L). This can be expressed mathematically as the first constraint: 
 

LmgQLmgQLmg PumpPump /4.1/8.0/8.1 21 ≤⋅+⋅        (2.1) 

 
The second constraint is due to limited maximum pumping capacity at each 
production well of 100 m³/h (QPump1) and 150 m³/h (QPump2), respectively.  
 

hmQPump /100 3

1 ≤    (2.2) 

hmQPump /150 3

1 ≤   (2.3) 
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And a third constraint is due to the fact that the pumping rate cannot be 
negative: 
 

hmQQ PumpPump /³0, 11 ≥    (2.4) 

 
For the management problem described above linear algorithms are used for 
solving the equations, e.g. LINPRO (SIMONOVIC 2009), since the all objectives 
and constraints of the optimization model are linear. However, in general the 
procedure (or algorithm) most appropriate for solving a particular 
optimization model depends on the particular mathematical structure of a 
model. Thus there is no single universal solution procedure that will 
efficiently solve all optimization models. For more details about the 
theoretical background on current state-of-the-art optimization techniques 
and easy hands-on examples for water resource management problems the 
reader is referred to LOUCKS & VAN BEEK (2005), HAIMES (2009) or SIMONOVIC 
(2009). 
 
Note that the ‘optimal’ solution of the mathematical optimization model is 
only optimal with respect to the included objectives and constraints. In 
addition, the ‘optimal’ solution is also dependent upon the chosen 
optimization technique (e.g. linear, nonlinear, dynamic programming, 
evolutionary algorithms) and the assumed values for the model parameters. 
The latter limitation is further intensified through the inability to quantify 
and express all objectives and constraints in a mathematically adequate way. 
For example different decision makers may have different priorities for 
performance objectives or specific target values. A method which is able to 
take this uncertainty into account is the fuzzy set theory (SIMONOVIC 2009), 
which allows to define fuzzy membership functions for both, objectives and 
constraints. This method tolerates smaller violations (constraints do not need 
to be completely satisfied), but its application needs expert judgement about 
the specific qualitative value loadings.  
 
In a nutshell the ‘optimal’ solution of an optimization model is only optimal 
with respect to included objectives and constraints, its specific structure and 
its assumed values, which may not always reflect the value loadings of each 
decision-maker. Nevertheless the application of optimization models is a 
valuable tool, as it enables to analyse the impacts of different management 
objectives and constraints in a systematic way. This may lead to the following 
benefits in the decision making process (PRODANOVIC 2008): 

- Identification of trade-offs among different inherently competing 
management goals (e.g. high bank filtration share vs. long minimum 
travel time) 

- Discussion and potential reconsideration of unrealistic target values 
for which no optimum solution is possible 

 
As a consequence optimization modelling brings a higher transparency into 
the decision-making process. Thereby it further stimulates the identification 
of key management objectives in an open, goal-orientated dialogue and thus 
helps to manage well fields more efficiently. 
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2.3 Combining Simulation and Optimization Modelling 

 
Simulation models are useful tools to assess groundwater flow systems, to 
test specific water-resource management plans, or even, in a trial-and-error 
approach, to select the plan that meets desired goals and constraints criteria 
best. They address ‘what if’ scenarios, that is, how does the well field system 
react if a certain scenario (e.g. clogging parameter) is assumed or a particular 
management decision (e.g. on pumping rates) is made. However, given the 
complexity of groundwater systems and the large number of decision-factors 
involved, the trial and error approach is insufficient to obtain overall optimal 
solutions (considering multiple management objectives and constraints). In 
particular this process can be very time-consuming. Thus simulation works 
well if only a few alternatives are taken into account. To address this 
difficulty simulation models are often linked and run in tandem with 
optimization models (Figure 6).  
Since optimization models explicitly consider management objectives and 
constraints they can be efficient pre-screening tools to find ‘optimal’ 
management plans or operating policies. The output of the optimization 
model is used as input parameter for the simulation model (see red text in 
Table 1). The subsequent model run enables to estimate the impacts that those 
‘optimal’ management decisions may have on the state parameters of the well 
field performance (e.g. groundwater levels, pumped raw water quality, bank 
filtration share, travel time, drawdown).  
For example combined simulation-optimization models are used for 
managing regional aquifer systems (BARLOW 2005), transboundary aquifer 
systems (SIEGFRIED 2004), the conjunctive use of surface water & groundwater 
(CZARNECKI et al. 2003) or energy demand and contaminant level 
optimization of well fields (DHI 2007-2010, MADSEN et al. 2009). For example 
the water supplier BWB has ordered such a tool for strategic planning 
purposes (GCI GMBH 2004).  
 

 

Figure 6  Development process of combined simulation-optimization models, 
slightly adapted from (BARLOW 2005) 
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As mentioned above the main difference between simulation and 
optimization models is their scope. While optimization models need an 
explicit mathematical description of objectives and constraints, simulation 
models do not. Thus, the required model input and output parameters for 
both are quite different as illustrated in Table 1. Linking between both is 
established by using the output parameter of the optimization model as input 
parameter of the simulation model (red text in Table 1) and vice versa (green 
text in Table 1).  
 

Table 1 Comparison of input-output data for simulation and optimization 
models 

Tool Technique Input parameters Output parameters 

Distributed model 
results (water budget 
for each model grid or 

mesh element)  

Groundwater levels 
(>input for 

optimization model), 
streamlines, drawdown  

Share of bank filtrate  

Minimum travel time 
(production well - bank) 

Process-
driven 
(e.g. 

MODFLOW, 
FEFLOW) 

a priori known input parameters 
(for MODFLOW see e.g. REILLY & 

HARBAUGH 2004); 
 

System properties : aquifer/riverbed 
transmissivity, effective porosity 

 
Model discretization (temporal & 
spatial);  

 
Initial and boundary conditions: no 
flow, constant head, constant flux or 
time varying head/flux boundary, 
initial hydraulic head distribution; 
Production well discharge: well 
locations, pumping rates (>input 
from optimization model); 

Infiltration Length 

S
im

u
la

ti
o

n
 

Data-driven 
(e.g. ANN, 

SVM) 

a priori undefined input 
parameters (dependent on the 

modelling objective): 
determination through pattern 
recognition  techniques, e.g. 

principal component analysis; 
requires adequate temporal and 

spatial data resolution (depending 
on the dynamics of the output 

parameter of interest)  

Dependent on the 
modelling scope (e.g. 
groundwater levels, 

contaminant 
concentrations in 

pumped raw water),  
Lumped model results: 
only for locations used 

as input variables 

Decision parameters: e.g. pumping 
rate per well, allocation of active 

pumping wells within the well field  

Objectives: minimum raw water 
quality (e. g. thresholds from 

drinking water guidelines), BF share 

Objective function: linear (e.g.: 
pollutants concentration value) or 
nonlinear (e.g. pumping costs with 

additional lift height due to 
interference of multiple production 

wells) 

O
p

ti
m

iz
a
ti

o
n

 

General  
(e.g. linear, 
nonlinear 

optimization) 

Constraints:, minimum groundwater 
level (>input from simulation 

model), pumping capacity of wells, 
water demand 
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The results for the combination of our hypothetical simulation-optimization 
model (see Chapter 2.2 and 2.1) are shown in Figure 7. Two ‘optimal’ out of 
four initially defined operational management options are identified in case 
of a single production well (45 or 80 m³/h pumping rate), which work fine for 
zero or medium bank clogging.  
 

 

Figure 7  Resulting ‘optimal’ management options for hypothetical simulation-
optimization model. Note that optimization modelling is used in this 
context only for identifying the target values of the management 
objective BF share (see Chapter 2.2)! Subsequently the decision 
parameter (pumping rate) was not determined automatically through 
an optimization model, but by using a simple trial-and-error 
approach (see Figure 1). 

 
For more complex management problems (multi-objective optimization for 
many decision parameters: operating production wells, pumping rates) the 
benefit of joining simulation and optimization techniques will be much 
greater, since the potential well field operating schemes will increase 
according to the included decision parameters (production wells) by power 
two. As a consequence combined simulation-optimization models can greatly 
enhance the efficiency of simulation models alone by directly incorporating 
management objectives and constraints into the modelling process. This pre-
screening of the most promising operational management plans helps to (i) 
minimize the computational effort of simulation models and to (ii) identify 
trade-offs among competing objectives, which adds transparency to the 
decision making process. 
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3 Conclusion 

In a nutshell we identified that most of the well field simulation tools ordered 
by water suppliers from environmental or hydrogeological consulting firms 
are based on process-driven models like FEFLOW (for BWB e.g.  GCI GMBH 
2002). These are sometimes also combined with an optimization model to 
reduce the computational demand, so that they can be used as strategic 
planning tools (for BWB e.g. GCI GMBH 2004). Ongoing research activities in 
the field of combined simulation-optimization modelling for well field 
management are mainly focused on this approach (e.g. DHI 2007-2010, 
MADSEN et al. 2009). However, even if the burden of the high computational 
effort can be minimized, the application of these deterministic models still is 
based on the (i) integration of the conceptual hydrogeological understanding 
into the model and (ii) the selected model parameterisation (e.g. hydraulic 
conductivity, clogging layer, temporal and spatial model discretization). 
Subsequently wrong assumptions in both can easily lead to bad predictions, 
which in turn limit their usefulness especially for operational well field 
management.  
In case of optimizing well field operation (i) under relatively constant 
boundary conditions and (ii) sufficient field data (temporal and spatial 
resolution dependent of the dynamics of the state parameter of interest, e.g. 
groundwater table, contaminant concentrations) data-driven approaches like 
support vector machines can be used instead of process-driven models. If the 
water manager’s key interest is only a good predictive capability in 
combination with low computational demand, the application of these tools is 
orientated more towards the goal to efficiently simulate the well field 
dynamics.  
 
The contents of this report were presented to possible end-users, experts from 
Berliner Wasserbetriebe and Veolia. In agreement with their 
recommendations it was decided to focus further research within 
TECHNEAU on the empirical, data driven modelling approach. This 
approach is currently tested in the framework of a diploma thesis for a Berlin 
waterworks with the objective to analyse available production and 
observation well hydrographs. These data will be used to develop an 
empirical model, which is able to derive the influence of the pumping regime 
on the groundwater levels within the well field. For this linear and nonlinear 
statistical methods like principal component analysis and Support Vector 
Machines will be applied. Under the constraint of the above mentioned 
boundary conditions it should be possible to derive optimal management 
options, which will be compiled in Deliverable 5.2.13. 
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